68 research outputs found

    Bacterial artificial chromosomes as analytical basis for gene transcriptional machineries

    Get PDF
    Bacterial Artificial Chromosomes (BACs) had been minimal components of various genome-sequencing projects, constituting perfect analytical basis for functional genomics. Here we describe an enhancer screening strategy in which BAC clones that cover any genomic segments of interest are modified to harbor a reporter cassette by transposon tagging, then processed to carry selected combinations of gene regulatory modules by homologous recombination mediated systematic deletions. Such engineered BAC-reporter constructs in bacterial cells are ready for efficient transgenesis in mice to evaluate activities of gene regulatory modules intact or absent in the constructs. By utilizing the strategy, we could speedily identify a critical genomic fragment for spatio-temporally regulated expression of a mouse cadherin gene whose structure is extraordinarily huge and intricate. This BAC-based methodology would hence provide a novel screening platform for gene transcriptional machineries that dynamically fluctuate during development, pathogenesis and/or evolution

    Circadian Modulation of Gene Expression, but not Glutamate Uptake, in Mouse and Rat Cortical Astrocytes

    Get PDF
    Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1) and Period2 (Per2). However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian.We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice.We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations

    Large Scale Gene Expression Profiles of Regenerating Inner Ear Sensory Epithelia

    Get PDF
    Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear. Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of seven distinct known signaling pathways were clearly identifiable: TGFβ, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27KIP and TFs that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene expression in this large dataset also revealed the additional presence of many components (and possible network interactions) of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions

    HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability

    Full text link
    Here, we show that the human homologue of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2) associates with the S-phase checkpoint components ATR, ATRIP, claspin and Chk1. Consistent with a critical role in the S-phase checkpoint, HCLK2-depleted cells accumulate spontaneous DNA damage in S-phase, exhibit radio-resistant DNA synthesis, are impaired for damage-induced monoubiquitination of FANCD2 and fail to recruit FANCD2 and Rad51 (critical components of the Fanconi anaemia and homologous recombination pathways, respectively) to sites of replication stress. Although Thr 68 phosphorylation of the checkpoint effector kinase Chk2 remains intact in the absence of HCLK2, claspin phosphorylation and degradation of the checkpoint phosphatase Cdc25A are compromised following replication stress as a result of accelerated Chk1 degradation. ATR phosphorylation is known to both activate Chk1 and target it for proteolytic degradation, and depleting ATR or mutation of Chk1 at Ser 345 restored Chk1 protein levels in HCLK2-depleted cells. We conclude that HCLK2 promotes activation of the S-phase checkpoint and downstream repair responses by preventing unscheduled Chk1 degradation by the proteasome. The DNA damage response (DDR) is a complex process involving the orchestration of highly specialized cell-cycle checkpoints that need to be rapidly activated following the detection of damaged DNA. Each of these signalling cascades involves several unique and overlapping factors — classified as sensors, mediators, transducers and effector

    OT-82, a novel anticancer drug candidate that targets the strong dependence of hematological malignancies on NAD biosynthesis

    Full text link
    Effective treatment of some types of cancer can be achieved by modulating cell lineage-specific rather than tumor-specific targets. We conducted a systematic search for novel agents selectively toxic to cells of hematopoietic origin. Chemical library screenings followed by hit-to-lead optimization identified OT-82, a small molecule with strong efficacy against hematopoietic malignancies including acute myeloblastic and lymphoblastic adult and pediatric leukemias, erythroleukemia, multiple myeloma, and Burkitt’s lymphoma in vitro and in mouse xenograft models. OT-82 was also more toxic towards patients-derived leukemic cells versus healthy bone marrow-derived hematopoietic precursors. OT-82 was shown to induce cell death by inhibiting nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway of NAD synthesis. In mice, optimization of OT-82 dosing and dietary niacin further expanded the compound’s therapeutic index. In toxicological studies conducted in mice and nonhuman primates, OT-82 showed no cardiac, neurological or retinal toxicities observed with other NAMPT inhibitors and had no effect on mouse aging or longevity. Hematopoietic and lymphoid organs were identified as the primary targets for dose limiting toxicity of OT-82 in both species. These results reveal strong dependence of neoplastic cells of hematopoietic origin on NAMPT and introduce OT-82 as a promising candidate for the treatment of hematological malignancies
    corecore