90 research outputs found

    Broadband spectral characterization of the phase shift induced by population inversion in Ti:Sapphire

    Get PDF
    The spectral phase shift of broadband amplified pulses, induced by population inversion, was measured in Ti:Sapphire at different pump fluence values. The measurement was performed for two orthogonal polarization directions and at two different crystal temperatures of 296 K and 30 K. Zero shifts and sign changes were observed in the spectral phase, which are connected to the gain spectrum of the crystal. The electronic refractive index changes were also numerically calculated by the Kramers-Kronig theory. The results are highly important for achieving sub-10 fs pulse duration and phase stability in the next generation of Ti:Sapphire-based laser systems. © 2019 Optical Society of America

    Threshold of laser destruction of nonlinear GaSe and GaSe:in crystals when exposed to pulsed radiation at a wavelength of 2.1 microns

    Get PDF
    The aim of this work is to determine the optical breakdown threshold of a single crystal GaSe and GaSe:In when exposed to nanosecond radiation of the two micron range and determining the influence of the energy parameters of the testing radiation on the breakdown threshold. The Ho3+:YAG laser was used as the laser radiation source in this work. Pumping was carried out by a Thule fiber laser.В ст. ошибочно: E. V. Zhuravle

    Influence of post-post processing technology and laser radiation parameters on the optical breakdown threshold of a ZnGeP2 single crystal

    Get PDF
    The aim of this work is to determine the influence of the parameters of post-growth technological operations and experimental conditions on the threshold of optical breakdown of the surface of ZGP crystals under the action of laser radiation at a wavelength of 2091 nm

    Laser-induced damage threshold of nonlinear GaSe and GaSe:In crystals upon exposure to pulsed radiation at a wavelength of 2.1 μm

    Get PDF
    The paper defined the laser-induced damage threshold from the fluence and the peak power of GaSe and GaSe:In single crystals upon exposure to nanosecond radiation in the two micron range and assessed the influence of test radiation energy parameters (pulse repetition rate, pulse duration) on the damage threshold. Laser-induced damage threshold was determined with the parameters of the incident radiation close to the pump radiation parameters of promising dual-wavelength optical parametric oscillators (effective pump sources for THz difference frequency oscillators): wavelength was ≈ 2.1 μm; pulse repetition rates were 10, 12, 14, and 20 kHz; and pulse durations were 15, 18, 20, and 22 ns. The obtained results made it possible to conclude that the value of GaSe damage threshold at a wavelength of 2.091 μm of the incident radiation was influenced by the accumulation effects (the damage threshold decreased as the pulse repetition rate increased). The accumulation effects were more significant in the case of the In-doped sample, since a more significant decrease in the damage threshold was observed with increasing frequency in terms of the peak power and the fluence

    Superconductivity-induced Resonance Raman Scattering in Multi-layer High-Tc Superconductors

    Full text link
    Resonant Raman scattering below Tc has been discovered in several Bi-, Hg-, Tl-based high-Tc superconductors with three or four CuO2-layers. For Bi2Si2Ca2Cu3O10+d, we found an unexpected crossover of the pair-breaking peak in the A1g-spectrum from a broad bump at hw = 6kBTc for Eexc = 2.54eV to a sharp peak at hw = 8kBTc for Eexc = 2.18eV, together with a strong enhancement of the Ca-phonons. Under resonant conditions, the relative positions of the pair breaking peaks in A1g, B1g, and B2g channels are 2Delta(A1g) = 2Delta(B1g) > 2Delta(B2g). This relation implies that the A1g Raman channel is free from the Coulomb screening effect, just as predicted theoretically for a d-wave multi-layer superconductor but have never been observed experimentally thus far. The observed resonance effect is the evidence that the electronic state in the inner CuO2-planes is different from that of the outer CuO2-planes.Comment: 16 pages, 6 figures. submitted to Phys.Rev.
    corecore