413 research outputs found
Discriminating between technicolor and warped extra dimensional model via pp ZZ channel
We explore the possibility to discriminate between certain strongly-coupled
technicolor (TC) models and warped extra-dimensional models where the Standard
Model fields are propagating in the extra dimension. We consider a generic
QCD-like TC model with running coupling as well as two TC models with walking
dynamics. We argue that due to the different production mechanisms for the
lowest-lying composite tensor state in these TC theories compared to the first
Kaluza-Klein graviton mode of warped extra-dimensional case, it is possible to
distinguish between these models based on the angular analysis of the
reconstructed longitudinal Z bosons in the four charged
leptons channel.Comment: 16 pages, 3 figures, 1 tabl
A Perturbative Realization of Miransky Scaling
Near conformal dynamics is employed in different extensions of the standard
model of particle interactions as well as in cosmology. Many of its interesting
properties are either conjectured or determined using model computations. We
introduce a relevant four dimensional gauge theory template allowing us to
investigate such dynamics perturbatively. The gauge theory we consider is
quantum chromodynamics with the addition of a meson-like scalar degree of
freedom as well as an adjoint Weyl fermion.
At the two-loop level, and in the Veneziano limit, we firmly establish the
existence of several fixed points of which one is all directions stable in the
infrared. An interesting feature of the model is that this fixed point is lost,
within the perturbatively trustable regime, by merging with another fixed point
when varying the number of quark flavors. We show the emergence of the Miransky
scaling and determine its properties. We are also able to determine the walking
region of the theory which turns out to be, at large number of colors, about
12% of the conformal window. Furthermore, we determine highly relevant
quantities for near conformal dynamics such as the anomalous dimension of the
fermion masses.Comment: 17 pages, 8 figure
Emergence of supersymmetry on the surface of three dimensional topological insulators
We propose two possible experimental realizations of a 2+1 dimensional
spacetime supersymmetry at a quantum critical point on the surface of three
dimensional topological insulators. The quantum critical point between the
semi-metallic state with one Dirac fermion and the s-wave superconducting state
on the surface is described by a supersymmetric conformal field theory within
-expansion. We predict the exact voltage dependence of the
differential conductance at the supersymmetric critical point.Comment: 8 pages, 2 figures; published versio
Synthesis of tetrathioesters and tetrathioamides based p-tert- butylthiacalix[4]arene and studying their recognition abilities towards different metals by extraction
p-tert-Butylthiacalix[4]arene tetrathioesters 2a-c and tetrathioamides 4a-c in three different conformers (cone, partial cone and 1,3-alternate respectively) have been synthesized. The later were characterized by different physical methods IR, 1H NMR, 13C NMR and X-ray crystallography. Their recognition abilities towards different alkali, earth alkaline and transition metals such as (Na+, K+, Cs +, Ba2+, Pb2+, Ag+, Cd2+, Hg2+ and Co2+) cations have been examined by metal picrate extraction from aqueous solutions into dichloromethane. Graphical Abstract: [Figure not available: see fulltext.] Β© 2013 Springer Science+Business Media Dordrecht
Constraints on Conformal Windows from Holographic Duals
We analyze a beta function with the analytic form of
Novikov-Shifman-Vainshtein-Zakharov result in the five dimensional
gravity-dilaton environment. We show how dilaton inherits poles and fixed
points of such beta function through the zeros and points of extremum in its
potential. Super Yang-Mills and supersymmetric QCD are studied in detail and
Seiberg's electric-magnetic duality in the dilaton potential is explicitly
demonstrated. Non-supersymmetric proposals of similar functional form are
tested and new insights into the conformal window as well as determinations of
scheme-independent value of the anomalous dimension at the fixed point are
presented.Comment: Fig. 5b is corrected to match the discussion in the tex
Phosphorus macrocycles and cryptands
The reviews covers authors" studies dealing with the synthesis of PIII- and PV-containing macrocycles and cryptands. The separation, structural characterization, and the chemical properties of a number of homeomorphic compounds with in,out bridgehead phosphorus atoms are described. Modification of the in-positions in macrobicyclic compounds with bulky groups is described for the first time
Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation
Β© 2018 Ermakova et al. In order to obtain a non-toxic amphiphilic calixresorcinarene capable to form nanoconjugates for drug encapsulation, tetraundecylcalixresorcinarene functionalized by methoxy poly(ethylene glycol) chains has been synthesized. The macrocycle obtained is characterized by low hemotoxicity. In aqueous solution it forms nanoassociates that are able to encapsulate organic substrates of different hydrophobicity, including drugs (doxorubicin, naproxen, ibuprofen, quercetin). The micelles of the macrocycle slowed down the release of the hydrophilic substrates in vitro. In physiological sodium chloride solution and phosphate-buffered saline, the micelles of the macrocycle acquire thermoresponsive properties and exhibit a temperature-controlled release of doxorubicin in vitro. The combination of the low toxicity and the encapsulation properties of the obtained calixresorcinarene-mPEG conjugate shows promising potential for the use as a supramolecular drug-delivery system
Vacuum stability of asymptotically safe
We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatrix, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established
ΠΠΠΠ Π£ΠΠ’Π£ΠΠΠΠΠ― ΠΠΠΠΠ ΠΠ‘Π’ΠΠΠΠ― Π€ΠΠ’ΠΠΠΠΠ’ΠΠΠΠ ΠΠΠ― ΠΠΠ ΠΠΠ¦ΠΠ ΠΠΠ₯ΠΠ‘ΠΠΠ₯ Π€Π£ΠΠΠ¦ΠΠ ΠΠ ΠΠΠΠΠΠΠ£ Π‘ΠΠΠΠΠ
The substitution of antibiotics by natural substances of plant origin is a step to decrease the number of gastroβintestinal disorders and to improve the performances of the growth and development of different kinds of animals. The positive influence of the above preparations can be explained by the potential of the substances to support useful microflora of gastroβintestinal tract that protects the animal from pathogenic bacteria and alleviates the course of stress periods.
The review of the publications of the Ukrainian and foreign scientists on the use of feeds additives in the animal husbandry that contain phytobiotics and antioxidants has been given in the article.
It has been found out that natural stimulators of growth (NSG) are the perspective of the substitution of antibiotic stimulators of growth (ASG) on modern animal breeding farms. Such products as organic acids, immunomodulators, probiotics, prebiotics, synbiotics, ferments or phytobiotics have proved their efficacy in providing feeds safety, supporting the health of gastroβintestinal tract and in the improvement of growth performances in different kinds of animals. Different natural stimulators of growth, combined in the balanced mixture, have a positive effect and help to resist the invasion of pathogenic agents and unfavorable conditions of maintenance.
ΠΠ°ΠΌΠ΅Π½Π° Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΎΠ² Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π²Π΅ΡΠ΅ΡΡΠ²Π°ΠΌΠΈ ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΡΠ°Π³ΠΎΠΌ Π΄Π»Ρ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎβΠΊΠΈΡΠ΅ΡΠ½ΡΡ
ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ² ΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΠΎΡΡΠ° ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
. ΠΠ»Π°Π³ΠΎΡΠ²ΠΎΡΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΡΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠΌ Π΄Π°Π½Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² Π² ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠ»ΠΎΡΡ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎβΠΊΠΈΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΠΊΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π·Π°ΡΠΈΡΠ°Π΅Ρ ΠΆΠΈΠ²ΠΎΡΠ½ΠΎΠ΅ ΠΎΡ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΈ ΡΠΌΡΠ³ΡΠ°Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΡΠ΅ΡΡΠΎΠ²ΡΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ².Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΡΡ
ΠΈ ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΡΠ΅Π½ΡΡ
ΠΏΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΆΠΈΠ²ΠΎΡΠ½ΠΎΠ²ΠΎΠ΄ΡΡΠ²Π΅ ΠΊΠΎΡΠΌΠΎΠ²ΡΡ
Π΄ΠΎΠ±Π°Π²ΠΎΠΊ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠΈΡΠΎΠ±ΠΈΠΎΡΠΈΠΊΠΈ ΠΈ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΡ.Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠ΅ ΡΡΠΈΠΌΡΠ»ΡΡΠΎΡΡ ΡΠΎΡΡΠ° (ΠΠ‘Π ) β ΡΡΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Π΅ΡΠ°ΡΡΠ°Ρ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ Π·Π°ΠΌΠ΅Π½Ρ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠΈΠΌΡΠ»ΡΡΠΎΡΠΎΠ² ΡΠΎΡΡΠ° (ΠΠ‘Π ) Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΆΠΈΠ²ΠΎΡΠ½ΠΎΠ²ΠΎΠ΄ΡΠ΅ΡΠΊΠΈΡ
Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π°Ρ
. Π’Π°ΠΊΠΈΠ΅ ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ, ΠΈΠΌΠΌΡΠ½ΠΎΠΌΠΎΠ΄ΡΠ»ΡΡΠΎΡΡ, ΠΏΡΠΎΠ±ΠΈΠΎΡΠΈΠΊΠΈ, ΠΏΡΠ΅Π±ΠΈΠΎΡΠΈΠΊΠΈ, ΡΠΈΠ½Π±ΠΈΠΎΡΠΈΠΊΠΈ, ΡΠ΅ΡΠΌΠ΅Π½ΡΡ ΠΈΠ»ΠΈ ΡΠΈΡΠΎΠ±ΠΈΠΎΡΠΈΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠ²ΠΎΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΠΊΠΎΡΠΌΠΎΠ², ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ Π·Π΄ΠΎΡΠΎΠ²ΡΡ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠ½ΠΎβΠΊΠΈΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΠΊΡΠ° ΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΠΎΡΡΠ° Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
.Π Π°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΠ‘Π , ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠ΅ Π² ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠΌΠ΅ΡΡ, ΠΈΠΌΠ΅ΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅, ΠΏΡΠΎΡΠΈΠ²ΠΎΡΡΠΎΡΡ Π²ΡΠΎΡΠΆΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΡΡ
ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ.ΠΠ°ΠΌΡΠ½Π° Π°Π½ΡΠΈΠ±ΡΠΎΡΠΈΠΊΡΠ² ΠΏΡΠΈΡΠΎΠ΄Π½ΡΠΌΠΈ ΡΠ΅ΡΠΎΠ²ΠΈΠ½Π°ΠΌΠΈ ΡΠΎΡΠ»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ
ΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌ ΠΊΡΠΎΠΊΠΎΠΌ Ρ Π·Π½ΠΈΠΆΠ΅Π½Π½Ρ ΠΊΡΠ»ΡΠΊΠΎΡΡΡ ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎβΠΊΠΈΡΠΊΠΎΠ²ΠΈΡ
ΡΠΎΠ·Π»Π°Π΄ΡΠ² Ρ ΠΏΠΎΠΊΡΠ°ΡΠ΅Π½Π½Ρ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡΠ² Π·ΡΠΎΡΡΠ°Π½Π½Ρ Ρ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΡΡΠ·Π½ΠΈΡ
Π²ΠΈΠ΄ΡΠ² ΡΠ²Π°ΡΠΈΠ½. Π‘ΠΏΡΠΈΡΡΠ»ΠΈΠ²ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² ΡΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² ΠΏΠΎΡΡΠ½ΡΡΡΡΡΡ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π»ΠΎΠΌ Π΄Π°Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ Ρ ΠΏΡΠ΄ΡΡΠΈΠΌΡΡ ΠΊΠΎΡΠΈΡΠ½ΠΎΡ ΠΌΡΠΊΡΠΎΡΠ»ΠΎΡΠΈ ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎβΠΊΠΈΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ°ΠΊΡΡ, ΡΠΊΠ° Π·Π°Ρ
ΠΈΡΠ°Ρ ΡΠ²Π°ΡΠΈΠ½Ρ Π²ΡΠ΄ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΠΈΡ
Π±Π°ΠΊΡΠ΅ΡΡΠΉ Ρ ΠΏΠΎΠΌ'ΡΠΊΡΡΡ ΠΏΠ΅ΡΠ΅Π±ΡΠ³ ΡΡΡΠ΅ΡΠΎΠ²ΠΈΡ
ΠΏΠ΅ΡΡΠΎΠ΄ΡΠ².
Π£ ΡΡΠ°ΡΡΡ Π½Π°Π²Π΅Π΄Π΅Π½ΠΎ Π°Π½Π°Π»ΡΠ· ΠΏΠ΅ΡΡΠΎΠ΄ΠΆΠ΅ΡΠ΅Π» Π·Π°ΡΡΠ±ΡΠΆΠ½ΠΈΡ
Ρ Π²ΡΡΡΠΈΠ·Π½ΡΠ½ΠΈΡ
Π½Π°ΡΠΊΠΎΠ²ΡΡΠ² ΡΠΎΠ΄ΠΎ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ Ρ ΡΠ²Π°ΡΠΈΠ½Π½ΠΈΡΡΠ²Ρ ΠΊΠΎΡΠΌΠΎΠ²ΠΈΡ
Π΄ΠΎΠ±Π°Π²ΠΎΠΊ, ΡΠΊΡ Π²ΠΌΡΡΡΡΡΡ ΡΡΡΠΎΠ±ΡΠΎΡΠΈΠΊΠΈ ΡΠ° Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠΈ.
ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΠΏΡΠΈΡΠΎΠ΄Π½Ρ ΡΡΠΈΠΌΡΠ»ΡΡΠΎΡΠΈ ΡΠΎΡΡΡ (ΠΠ‘Π ) β ΡΠ΅ Π±Π°Π³Π°ΡΠΎΠΎΠ±ΡΡΡΡΡΠ° ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΡ Π·Π°ΠΌΡΠ½ΠΈ Π°Π½ΡΠΈΠ±ΡΠΎΡΠΈΡΠ½ΠΈΡ
ΡΡΠΈΠΌΡΠ»ΡΡΠΎΡΡΠ² ΡΠΎΡΡΡ (ΠΠ‘Π ) Π² ΡΡΡΠ°ΡΠ½ΠΈΡ
ΡΠ²Π°ΡΠΈΠ½Π½ΠΈΡΡΠΊΠΈΡ
Π³ΠΎΡΠΏΠΎΠ΄Π°ΡΡΡΠ²Π°Ρ
. Π’Π°ΠΊΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈ, ΡΠΊ ΠΎΡΠ³Π°Π½ΡΡΠ½Ρ ΠΊΠΈΡΠ»ΠΎΡΠΈ, ΡΠΌΡΠ½ΠΎΠΌΠΎΠ΄ΡΠ»ΡΡΠΎΡΠΈ, ΠΏΡΠΎΠ±ΡΠΎΡΠΈΠΊΠΈ, ΠΏΡΠ΅Π±ΡΠΎΡΠΈΠΊΠΈ, ΡΠΈΠ½Π±ΡΠΎΡΠΈΠΊΠΈ, ΡΠ΅ΡΠΌΠ΅Π½ΡΠΈ Π°Π±ΠΎ ΡΡΡΠΎΠ±ΡΠΎΡΠΈΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠ²ΠΎΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ Ρ Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ Π±Π΅Π·ΠΏΠ΅ΠΊΠΈ ΠΊΠΎΡΠΌΡΠ², ΠΏΡΠ΄ΡΡΠΈΠΌΡΡ Π·Π΄ΠΎΡΠΎΠ²'Ρ ΡΠ»ΡΠ½ΠΊΠΎΠ²ΠΎβΠΊΠΈΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ°ΠΊΡΡ Ρ ΠΏΠΎΠ»ΡΠΏΡΠ΅Π½Π½Ρ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡΠ² Π·ΡΠΎΡΡΠ°Π½Π½Ρ Ρ ΡΡΠ·Π½ΠΈΡ
Π²ΠΈΠ΄ΡΠ² ΡΠ²Π°ΡΠΈΠ½. Π ΡΠ·Π½Ρ ΠΠ‘Π , ΠΎΠ±'ΡΠ΄Π½Π°Π½Ρ Π² Π·Π±Π°Π»Π°Π½ΡΠΎΠ²Π°Π½Ρ ΡΡΠΌΡΡ, ΠΌΠ°ΡΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½Ρ Π΄ΡΡ, ΠΏΡΠΎΡΠΈΡΡΠΎΡΡΡ Π²ΡΠΎΡΠ³Π½Π΅Π½Π½Ρ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π½ΠΈΡ
ΠΎΡΠ³Π°Π½ΡΠ·ΠΌΡΠ² Ρ Π½Π΅ΡΠΏΡΠΈΡΡΠ»ΠΈΠ²ΠΈΠΌ ΡΠΌΠΎΠ²Π°ΠΌ ΡΡΡΠΈΠΌΠ°Π½Π½Ρ.
 
- β¦