14 research outputs found

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    Circulating plasma microRNAs in systemic sclerosis-associated pulmonary arterial hypertension

    No full text
    Objectives: SSc-associated pulmonary arterial hypertension (SSc-APAH) is a late but devastating complication of SSc. Early identification of SSc-APAH may improve survival. We examined the role of circulating miRNAs in SSc-APAH. Methods: Using quantitative RT-PCR the abundance of mature miRNAs in plasma was determined in 85 female patients with ACA-positive lcSSc. Twenty-two of the patients had SSc-APAH. Sixty-three SSc controls without PAH were matched for disease duration. Forty-six selected miRNA plasma levels were correlated with clinical data. Longitudinal samples were analysed from 14 SSc-APAH and 27 SSc patients. Results: The disease duration was 12 years for the SSc-APAH patients and 12.7 years for the SSc controls. Plasma expression levels of 11 miRNAs were lower in patients with SSc-APAH. Four miRNAs displayed higher plasma levels in SSc-APAH patients compared with SSc controls. There was significant difference between groups for miR-20a-5p and miR-203a-3p when correcting for multiple comparisons (P = 0.002 for both). Receiver operating characteristics curve showed AUC = 0.69-0.83 for miR-21-5p and miR-20a-5p or their combination. miR-20a-5p and miR-203a-3p correlated inversely with NT-pro-Brain Natriuretic Protein levels (r = -0.42 and -0.47). Mixed effect model analysis could not identify any miRNAs as predictor of PAH development. However, miR-20a-5p plasma levels were lower in the longitudinal samples of SSc-APAH patients than in the SSc controls. Conclusions: Our study links expression levels of the circulating plasma miRNAs, especially miR-20a-5p and miR-203a-3p, to the occurrence of SSc-APAH in female patients with ACA-positive lcSSc

    Diurnal Variations of Human Circulating Cell-Free Micro-RNA.

    Get PDF
    A 24-hour light and dark cycle-dependent rhythmicity pervades physiological processes in virtually all living organisms including humans. These regular oscillations are caused by external cues to endogenous, independent biological time-keeping systems (clocks). The rhythm is reflected by gene expression that varies in a circadian and specific fashion in different organs and tissues and is regulated largely by dynamic epigenetic and post-transcriptional mechanisms. This leads to well-documented oscillations of specific electrolytes, hormones, metabolites, and plasma proteins in blood samples. An emerging, important class of gene regulators is short single-stranded RNA (micro-RNA, miRNA) that interferes post-transcriptionally with gene expression and thus may play a role in the circadian variation of gene expression. MiRNAs are promising biomarkers by virtue of their disease-specific tissue expression and because of their presence as stable entities in the circulation. However, no studies have addressed the putative circadian rhythmicity of circulating, cell-free miRNAs. This question is important both for using miRNAs as biological markers and for clues to miRNA function in the regulation of circadian gene expression. Here, we investigate 92 miRNAs in plasma samples from 24 young male, healthy volunteers repeatedly sampled 9 times during a 24-hour stay in a regulated environment. We demonstrate that a third (26/79) of the measurable plasma miRNAs (using RT-qPCR on a microfluidic system) exhibit a rhythmic behavior and are distributed in two main phase patterns. Some of these miRNAs weakly target known clock genes and many have strong targets in intracellular MAPK signaling pathways. These novel findings highlight the importance of considering bio-oscillations in miRNA biomarker studies and suggest the further study of a set of specific circulating miRNAs in the regulation and functioning of biological clocks

    Diurnal Variations of Human Circulating Cell-Free Micro-RNA - Fig 3

    No full text
    <p><b>A, Heatmap showing overrepresented Reactome pathways.</b> For each miRNA all strong targets (defined by miRTarBase) was used for GO analysis using gProfileR. Only miRNAs where target genes were significantly overrepresented in one or more pathways are shown. Colors indicate <i>p</i>-value with red colors being associated with lower <i>p</i>-values. Non-significant matches were all assigned the value 0.05. The color bar on top of the plot indicates groups belonging into 5 time-point specific expression groups (group 1: red, group 2: blue, group 3: green, group 4: black, group 5: pink). <b>B, MAPK pathway targets.</b> Strongly binding predicted MAPK pathway targets of significant rhythmic miRNAs of the present study are colored red.</p

    Diurnal miRNAs.

    No full text
    <p>Sleep periods are indicated in grey. Individual points represent the mean and SEM of the values of the 24 test individuals.</p
    corecore