755 research outputs found

    Ring diagram analysis of near-surface flows in the Sun

    Get PDF
    Ring diagram analysis of solar oscillation power spectra obtained from MDI data is carried out to study the velocity fields in the outer part of the solar convection zone. The three dimensional power spectra are fitted to a model which has a Lorentzian profile in frequency and which includes the advection of the wave front by horizontal flows, to obtain the two components of the sub-surface flows as a function of the horizontal wave number and radial order of the oscillation modes. This information is then inverted using OLA and RLS methods to infer the variation in horizontal flow velocity with depth. The average rotation velocity at different latitudes obtained by this technique agrees reasonably with helioseismic estimates made using frequency splitting data. The shear layer just below the solar surface appears to consist of two parts with the outer part up to a depth of 4 Mm, where the velocity gradient does not show any reversal up to a latitude of 60 degrees. In the deeper part the velocity gradient shows reversal in sign around a latitude of 55 degrees. The zonal flow velocities inferred in the outermost layers appears to be similar to those obtained by other measurements. A meridional flow from equator polewards is found. It has a maximum amplitude of about 30 m/s near the surface and the amplitude is nearly constant in the outer shear layer.Comment: aastex, 12 figures, to appear in Ap.

    Seismic investigation of the solar structure using GONG frequencies

    Get PDF
    Using the recently obtained GONG frequencies, we investigate the properties of the solar interior by constructing solar models with various input physics like opacities, equation of state, nuclear reaction rates etc. The differential asymptotic inversion technique is then used to infer the relative difference in sound speed between the Sun and solar models. Here we apply these results to test equation of state and different formulation for calculating the convective flux.Comment: Latex, 2 pages, 3 figures, To appear in the IAU Symp. # 181: "Sounding solar and stellar interiors", eds. F.X. Schmider & J. Provos

    Experimental Quantum Cloning of Single Photons

    Get PDF
    Although perfect copying of unknown quantum systems is forbidden by the laws of quantum mechanics, approximate cloning is possible. A natural way of realizing quantum cloning of photons is by stimulated emission. In this context the fundamental quantum limit to the quality of the clones is imposed by the unavoidable presence of spontaneous emission. In our experiment a single input photon stimulates the emission of additional photons from a source based on parametric down-conversion. This leads to the production of quantum clones with near optimal fidelity. We also demonstrate universality of the copying procedure by showing that the same fidelity is achieved for arbitrary input states.Comment: 4 pages, 2 figure

    Comparison of High-degree Solar Acoustic Frequencies and Asymmetry between Velocity and Intensity Data

    Get PDF
    Using the local helioseismic technique of ring diagram we analyze the frequencies of high--degree f- and p-modes derived from both velocity and continuum intensity data observed by MDI. Fitting the spectra with asymmetric peak profiles, we find that the asymmetry associated with velocity line profiles is negative for all frequency ranges agreeing with previous observations while the asymmetry of the intensity profiles shows a complex and frequency dependent behavior. We also observe systematic frequency differences between intensity and velocity spectra at the high end of the frequency range, mostly above 4 mHz. We infer that this difference arises from the fitting of the intensity rather than the velocity spectra. We also show that the frequency differences between intensity and velocity do not vary significantly from the disk center to the limb when the spectra are fitted with the asymmetric profile and conclude that only a part of the background is correlated with the intensity oscillations.Comment: Accepted for publication in Astrophysical Journa

    On the control of acute rodent malaria infections by innate immunity

    Get PDF
    Does specific immunity, innate immunity or resource (red blood cell) limitation control the first peak of the blood-stage parasite in acute rodent malaria infections? Since mice deficient in specific immunity exhibit similar initial dynamics as wild-type mice it is generally viewed that the initial control of parasite is due to either limitation of resources (RBC) or innate immune responses. There are conflicting views on the roles of these two mechanisms as there is experimental evidence supporting both these hypotheses. While mathematical models based on RBC limitation are capable of describing the dynamics of primary infections, it was not clear whether a model incorporating the key features of innate immunity would be able to do the same. We examine the conditions under which a model incorporating parasite and innate immunity can describe data from acute <i>Plasmodium chabaudi</i> infections in mice. We find that innate immune response must decay slowly if the parasite density is to fall rather than equilibrate. Further, we show that within this framework the differences in the dynamics of two parasite strains are best ascribed to differences in susceptibility to innate immunity, rather than differences in the strains' growth rates or their propensity to elicit innate immunity. We suggest that further work is required to determine if innate immunity or resource limitation control acute malaria infections in mice

    Thermodynamics Property of Magnetic Materials in a Ferromagnetic System using the Ising Model

    Get PDF
    There is hardly any branch of physics one can approach successfully without resorting to quantum statistical mechanics.  It has been proven that the quantum mechanical description of a system gives accurate results.  To use quantum statistical mechanics, the system are treated at their microscopic level.  Most systems consist of many particles and in order o deal with such large numbers, one has to resort to statistical method related to the partition function of statistical mechanics.  In this study, we haves used the partition function which is  a statistical parameter to explore the thermodynamic properties such as Helmoltz free energy, Entropy, internal energy and heat capacity of a magnetic materials in a ferromagnetic system using the first and second dimensional Ising model. The results show that in one-dimensional model, phase transition does not occur at finite temperature but susceptibility of a system can be measured from the fluctuations in the magnetization in the second dimensional Ising model

    One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial Fourier modes

    Full text link
    We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the lattice length and is normalized by a size-dependent constant. The exponent α\alpha of the power law is taken in the range 0≤α<10 \le \alpha <1. The oscillator frequency distribution is symmetric about its mean (taken to be zero), and is non-increasing on [0,∞)[0,\infty). In the continuum limit, the local density of oscillators evolves in time following the continuity equation that expresses the conservation of the number of oscillators of each frequency under the dynamics. This equation admits as a stationary solution the unsynchronized state uniform both in phase and over the space of the lattice. We perform a linear stability analysis of this state to show that when it is unstable, different spatial Fourier modes of fluctuations have different stability thresholds beyond which they grow exponentially in time with rates that depend on the Fourier modes. However, numerical simulations show that at long times, all the non-zero Fourier modes decay in time, while only the zero Fourier mode (i.e., the "mean-field" mode) grows in time, thereby dominating the instability process and driving the system to a synchronized state. Our theoretical analysis is supported by extensive numerical simulations.Comment: 7 pages, 4 figures. v2: new simulation results added, close to the published versio

    Experimental Violation of a Spin-1 Bell Inequality Using Maximally Entangled Four-Photon States

    Get PDF
    We demonstrate the experimental violation of a spin-1 Bell inequality. The spin-1 inequality is based on the Clauser, Horne, Shimony, and Holt formalism. For entangled spin-1 particles, the maximum quantum-mechanical prediction is 2.55 as opposed to a maximum of 2, predicted using local hidden variables. We obtained an experimental value of 2.27±0.02 using the four-photon state generated by pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality by more than 13 standard deviations
    • …
    corecore