319 research outputs found

    Developing computational infrastructure for the CorCenCC corpus - the National Corpus of Contemporary Welsh

    Get PDF
    CorCenCC (Corpws Cenedlaethol Cymraeg Cyfoes - National Corpus of Contemporary Welsh) is the first comprehensive corpus of Welsh designed to be reflective of language use across communication types, genres, speakers, language varieties (regional and social) and contexts. This article focuses on the computational infrastructure that we have designed to support data collection for CorCenCC, and the subsequent uses of the corpus which include lexicography, pedagogical research and corpus analysis. A grass-roots approach to design has been adopted, that has adapted and extended previous corpus-building and introduced new features as required for this specific context and language. The key pillars of the infrastructure include a framework that supports metadata collection, an innovative mobile application designed to collect spoken data (utilising a crowdsourcing approach), a backend database that stores curated data and a web-based interface that allows users to query the data online. A usability study was conducted to evaluate the user facing tools and to suggest directions for future improvements. Though the infrastructure was developed for Welsh language collection, its design can be re-used to support corpus development in other minority or major language contexts, broadening the potential utility and impact of this work

    Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform

    Get PDF
    The integration of light sources on a photonic platform is a key aspect of the fabrication of self-contained photonic circuits with a small footprint that does not have a definitive solution yet. Several approaches are being actively researched for this purpose. In this work we propose optoelectronic tweezers for the manipulation and integration of light sources on a photonic platform and report the positional and angular accuracy of the micromanipulation of standard Fabry-Pérot InP semiconductor laser die. These lasers are over three orders of magnitude bigger in volume than any previously assembled with optofluidic techniques and the fact that they are industry standard lasers makes them significantly more useful than previously assembled microdisk lasers. We measure the accuracy to be 2.5 ± 1.4 µm and 1.4 ± 0.4° and conclude that optoelectronic tweezers are a promising technique for the micromanipulation and integration of optoelectronic components in general and semiconductor lasers in particular

    The effect of head and neck per-cooling on neuromuscular fatigue following exercise in the heat

    Get PDF
    The effect of localised head and neck per-cooling on central and peripheral fatigue during high thermal strain was investigated. Fourteen participants cycled for 60 min at 50% peak oxygen uptake on 3 occasions: thermoneutral control (CON; 18 °C), hot (HOT; 35 °C), and HOT with head and neck cooling (HOTcooling). Maximal voluntary force (MVF) and central activation ratio (CAR) of the knee extensors were measured every 30 s during a sustained maximal voluntary contraction (MVC). Triplet peak force was measured following cycling, before and after the MVC. Rectal temperatures were higher in HOTcooling (39.2 ± 0.6 °C) and HOT (39.3 ± 0.5 °C) than CON (38.1 ± 0.3 °C; P < 0.05). Head and neck thermal sensation was similar in HOTcooling (4.2 ± 1.4) and CON (4.4 ± 0.9; P > 0.05) but lower than HOT (5.9 ± 1.5; P < 0.05). MVF and CAR were lower in HOT than CON throughout the MVC (P < 0.05). MVF and CAR were also lower in HOTcooling than CON at 5, 60, and 120 s, but similar at 30 and 90 s into the MVC (P > 0.05). Furthermore, they were greater in HOTcooling than HOT at 30 s, whilst triplet peak force was preserved in HOT after MVC. These results provide evidence that central fatigue following exercise in the heat is partially attenuated with head and neck cooling, which may be at the expense of greater peripheral fatigue

    A State-of-the-Art Vegetation Map for Jordan: A New Tool for Conservation in a Biodiverse Country

    Get PDF
    In many countries, including Jordan, the updating of vegetation maps is required to aid in formulating development and management plans for agriculture, forest, and rangeland sectors. Remote sensing data contributes widely to vegetation mapping at different scales by providing multispectral information that can separate and identify different vegetation groups at reasonable accuracy and low cost. Here, we implemented state-of-the-art approaches to develop a vegetation map for Jordan, as an example of how such maps can be produced in regions of high vegetation complexity. Specifically, we used a reciprocal illumination technique that combines extensive ground data (640 vegetation inventory plots) and Sentinel-2 satellite images to produce a categorical vegetation map (scale 1:50,000). Supervised classification was used to translate the spectral characteristics into vegetation types, which were first delimited by the clustering analyses of species composition data from the plots. From the satellite image interpretation, two maps were created: an unsupervised land cover/land use map and a supervised map of present-day vegetation types, both consisting of 18 categories. These new maps should inform ecosystem management and conservation planning decisions in Jordan over the coming years

    A Low Cost Technique for Adding Microlasers to a Silicon Photonic Platform

    Get PDF
    In this paper we report the physical micromanipulation of standard InP telecommunications laser die in a liquid medium by means of optoelectronic tweezers. Optoelectronic tweezers have been shown to use much less optical power than optical tweezers, they do not require a coherent light source to function and the creation of multiple traps is straightforward. These properties make the technique a very good candidate for the massive parallel micromanipulation of optoelectronic components for assembly on a photonic platform. We discuss the positional and orientation accuracy of the optoelectronic tweezers in relation to the alignment requirements for low-loss coupling between the light sources and the other components in a photonic platform. Our experiments indicate that the accuracy is better than 2 µm and 2◦ for translations and rotations, respectively

    The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment

    Get PDF
    The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.Non peer reviewe

    United Nations Environment Programme (UNEP), Questions and Answers about the Effects of Ozone Depletion, UV Radiation, and Climate on Humans and the Environment. Supplement of the 2022 Assessment Report of the UNEP Environmental Effects Assessment Panel

    Get PDF
    This collection of Questions & Answers (Q&As) was prepared by the Environmental Effects Assessment Panel (EEAP) of the Montreal Protocol under the umbrella of the United Nations Environment Programme (UNEP). The document complements EEAP’s Quadrennial Assessment 2022 (https://ozone. unep.org/science/assessment/eeap) and provides interesting and useful information for policymakers, the general public, teachers, and scientists, written in an easy-to-understand language

    Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020

    Get PDF
    This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595–828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.PWB was supported by the J.H. Mullahy Endowment for Environmental Biology. TMR was partially supported by the University of Helsinki, Faculty of Biological & Environmental Sciences, and by the Academy of Finland (decision #324555). PJN was supported by the Smithsonian Institution. CEW was supported by NSF DEB 1754267, and NSF DEB 1950170. RGZ was supported by the US Environmental Protection Agency—the views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. ATB was supported by the Universidad Nacional Autónoma de México and thanks M. en C. Laura Celis for help with literature searches. SH was supported by the Swedish Environmental Protection Agency and Linnaeus University. MAKJ was supported by Science Foundation Ireland (16-IA-4418). JM-A was supported by the Spanish Ministry of Science, Innovation and Universities and European Regional Development Fund (project PGC2018-093824-B-C42). KM was supported by ETH Zurich. LER was supported by the NIHR Manchester Biomedical Research Centre. SAR was supported by the Australian Research Council and the University of Wollongong’s Global Challenges Program. KCR was supported by NSF grants 1754265 and 1761805. Q-WW gratefully acknowledges fnancial support from the CAS Young Talents Program and National Natural Science Foundation of China (41971148). SY was supported by Australian National Health and Medical Research Council CJ Martin Fellowship. We thank Emma Lesley (Global Challenges Program, University of Wollongong, for assistance with Fig. 1)

    Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report

    Get PDF
    The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials. The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically. As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health. Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel. Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information

    A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity

    Get PDF
    High-grade serous ovarian carcinoma is characterised by TP53 mutation and extensive chromosome instability (CIN). Because our understanding of CIN mechanisms is based largely on analysing established cell lines, we developed a workflow for generating ex vivo cultures from patient biopsies to provide models that support interrogation of CIN mechanisms in cells not extensively cultured in vitro. Here, we describe a “living biobank” of ovarian cancer models with extensive replicative capacity, derived from both ascites and solid biopsies. Fifteen models are characterised by p53 profiling, exome sequencing and transcriptomics, and karyotyped using single-cell whole-genome sequencing. Time-lapse microscopy reveals catastrophic and highly heterogeneous mitoses, suggesting that analysis of established cell lines probably underestimates mitotic dysfunction in advanced human cancers. Drug profiling reveals cisplatin sensitivities consistent with patient responses, demonstrating that this workflow has potential to generate personalized avatars with advantages over current pre-clinical models and the potential to guide clinical decision making
    corecore