6,335 research outputs found

    A Test of Photometric Redshifts for X-ray Selected Sources

    Full text link
    We test the effectiveness of photometric redshifts based upon galaxy spectral template fitting for X-ray luminous objects, using a sample of 65 sources detected by Chandra in the field of the Caltech Faint Galaxy Redshift Survey (CFGRS). We find that sources with quasar-dominated spectra (for which galaxy spectral templates are not appropriate) are easily identified, and that photometric redshifts are robust for the rest of the sources in our sample. Specifically, for the 59 sources that are not quasar-dominated at optical wavelengths, we find that the photometric redshift estimates have scatter comparable to the field galaxy population in this region. There is no evidence for a trend of increasing dispersion with X-ray luminosity over the range L_X = 10^39 - 5x10^43 erg/s, nor is there a trend with the ratio of X-ray to optical flux, f_X/f_R. The practical implication of this work is that photometric redshifts should be robust for the majority (~90%) of the X-ray sources down to f_X ~ 10^-16 erg/s/cm^2 that have optical counterparts brighter than R ~ 24. Furthermore, the same photometry can be easily used to identify the sources for which the photometric redshifts are likely to fail. Photometric redshift estimation can thus be utilized as an efficient tool in analyzing the statistical properties of upcoming large Chandra and XMM-Newton data sets and identifying interesting subsamples for further study.Comment: To appear in ApJ (6 pages, 6 figures). Replaced with accepted versio

    Distant Galaxy Clusters Identified From Optical Background Fluctuations

    Get PDF
    We present the first high redshift (0.3 < z < 1.1) galaxy clusters found by systematically identifying optical low surface brightness fluctuations in the background sky. Using spectra obtained with the Keck telescope and I-band images from the Palomar 1.5m telescope, we conclude that at least eight of the ten candidates examined are high redshift galaxy clusters. The identification of such clusters from low surface brightness fluctuations provides a complementary alternative to classic selection methods based on overdensities of resolved galaxies, and enables us to search efficiently for rich high redshift clusters over large areas of the sky. The detections described here are the first in a survey that covers a total of nearly 140 sq. degrees of the sky and should yield, if these preliminary results are representative, over 300 such clusters.Comment: Submitted to ApJ

    Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter

    Full text link
    We present a weak lensing mass reconstruction of the interacting cluster 1E0657-558 in which we detect both the main cluster and a sub-cluster. The sub-cluster is identified as a smaller cluster which has just undergone initial in-fall and pass-through of the primary cluster, and has been previously identified in both optical surveys and X-ray studies. The X-ray gas has been separated from the galaxies by ram-pressure stripping during the pass-through. The detected mass peak is located between the X-ray peak and galaxy concentration, although the position is consistent with the galaxy centroid within the errors of the mass reconstruction. We find that the mass peak for the main cluster is in good spatial agreement with the cluster galaxies and offset from the X-ray halo at 3.4 sigma significance, and determine that the mass-to-light ratios of the two components are consistent with those of relaxed clusters. The observed offsets of the lensing mass peaks from the peaks of the dominant visible mass component (the X-ray gas) directly demonstrate the presence, and dominance, of dark matter in this cluster. This proof of the dark matter existence holds true even under the assumption of modified Newtonian gravity (MOND); from the observed gravitational shear to optical light ratios and mass peak - X-ray gas offsets, the dark matter component in a MOND regime has a total mass which is at least equal to the baryonic mass of the system.Comment: 8 pages, 4 figure, accepted by Ap

    Forming Early-type Galaxies in Groups Prior to Cluster Assembly

    Get PDF
    We study a unique proto-cluster of galaxies, the supergroup SG1120-1202. We quantify the degree to which morphological transformation of cluster galaxies occurs prior to cluster assembly in order to explain the observed early-type fractions in galaxy clusters at z=0. SG1120-1202 at z~0.37 is comprised of four gravitationally bound groups that are expected to coalesce into a single cluster by z=0. Using HST ACS observations, we compare the morphological fractions of the supergroup galaxies to those found in a range of environments. We find that the morphological fractions of early-type galaxies (~60 %) and the ratio of S0 to elliptical galaxies (0.5) in SG1120-1202 are very similar to clusters at comparable redshift, consistent with pre-processing in the group environment playing the dominant role in establishing the observed early-type fraction in galaxy clusters.Comment: 5 pages, 2 figures, 2 tables. Accepted for publication in ApJ Letter

    Tests of the Las Campanas Distant Cluster Survey from Confirmation Observations for the ESO Distant Cluster Survey

    Full text link
    The ESO Distant Cluster Survey (EDisCS) is a photometric and spectroscopic study of the galaxy cluster population at two epochs, z~0.5 and z~0.8, drawn from the Las Campanas Distant Cluster Survey (LCDCS). We report results from the initial candidate confirmation stage of the program and use these results to probe the properties of the LCDCS. Of the 30 candidates targeted, we find statistically significant overdensities of red galaxies near 28. Of the ten additional candidates serendipitously observed within the fields of the targeted 30, we detect red galaxy overdensities near six. We test the robustness of the published LCDCS estimated redshifts to misidentification of the brighest cluster galaxy (BCG) in the survey data, and measure the spatial alignment of the published cluster coordinates, the peak red galaxy overdensity, and the brightest cluster galaxy. We conclude that for LCDCS clusters out to z~0.8, 1) the LCDCS coordinates agree with the centroid of the red galaxy overdensity to within 25'' (~150 h^{-1} kpc) for 34 out of 37 candidates with 3\sigma galaxy overdensities, 2) BCGs are typically coincident with the centroid of the red galaxy population to within a projected separation of 200 h^{-1} kpc (32 out of 34 confirmed candidates), 3) the red galaxy population is strongly concentrated, and 4) the misidentification of the BCG in the LCDCS causes a redshift error >0.1 in 15-20% of the LCDCS candidates. These findings together help explain the success of the surface brightness fluctuations detection method.Comment: 10 pages, 9 figures, accepted for publication in the November 10 issue of Ap

    Evidence for a constant IMF in early-type galaxies based on their X-ray binary populations

    Get PDF
    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom heavy IMFs. These bottom heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary populations (LMXBs) of nearby early-type galaxies. In these binaries, a neutron star or black hole accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of black holes and neutron stars present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light, and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low mass galaxies to a steep power-law IMF (with slope xx=2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.Comment: 12 pages, 5 figures, 2 tables, submitted to Ap
    corecore