21,166 research outputs found
Distributed Detection over Fading MACs with Multiple Antennas at the Fusion Center
A distributed detection problem over fading Gaussian multiple-access channels
is considered. Sensors observe a phenomenon and transmit their observations to
a fusion center using the amplify and forward scheme. The fusion center has
multiple antennas with different channel models considered between the sensors
and the fusion center, and different cases of channel state information are
assumed at the sensors. The performance is evaluated in terms of the error
exponent for each of these cases, where the effect of multiple antennas at the
fusion center is studied. It is shown that for zero-mean channels between the
sensors and the fusion center when there is no channel information at the
sensors, arbitrarily large gains in the error exponent can be obtained with
sufficient increase in the number of antennas at the fusion center. In stark
contrast, when there is channel information at the sensors, the gain in error
exponent due to having multiple antennas at the fusion center is shown to be no
more than a factor of (8/pi) for Rayleigh fading channels between the sensors
and the fusion center, independent of the number of antennas at the fusion
center, or correlation among noise samples across sensors. Scaling laws for
such gains are also provided when both sensors and antennas are increased
simultaneously. Simple practical schemes and a numerical method using
semidefinite relaxation techniques are presented that utilize the limited
possible gains available. Simulations are used to establish the accuracy of the
results.Comment: 21 pages, 9 figures, submitted to the IEEE Transactions on Signal
Processin
A study of the enzymatic hydrolysis of fish frames using model systems
A model system was employed to study the operating conditions and primary parameters of enzymic hydrolysis of cod proteins. Pancreatin, papain, and bromelain were used to hydrolyse minced cod fillets under controlled conditions and with the rate of hydrolysis being continually monitored via both the pH-stat and TNBS method. The two methods were compared and evaluated. The rate of protein solubilisation was plotted against the degree of hydrolysis (DH). Dry fish protein hydrolysate (FPH) powders having short, medium and high degrees of hydrolysis (DH of approximately 8%, 11% and 16% respectively) were produced and analysed for their molecular weight distribution, using size exclusion chromatography. Almost complete protein solubilisation (75 g soluble protein per kg hydrolysis solution) could be achieved within an hour, at 40°C, at 1% enzyme/substrate ratio (w/w) with papain and bromelain. The pH-stat was found capable of continuously following the rate of hydrolysis but only at low DH. The TNBS could be accurately used even at high DH to estimate the percentage of the peptide bonds cleaved, but required chemical analysis of withdrawn samples
Enzymatic hydrolysis of fish frames using pilot plant scale systems
Papain was used to hydrolyse fish frames under controlled conditions at a batch-pilot plant scale-process, for the pro-duction of fish protein hydrolysates (FPH). Mass balance calculations were carried out so that the rate of hydrolysis, rate of protein solubilisation and yields could be estimated. Almost complete hydrolysis could be achieved in 1 hour, at 40°C, with no pH adjustment, at 0.5% (5 g·kg−1) enzyme to substrate ratio (E/S, were S is Kjeldahl protein) using whole fish frames (including heads and flaps). This was achieved both with the addition of water (1/1 to 2/1 frames/water) but more importantly from commercial considerations without the initial addition of water (after mincing of the fish mate-rial). The degree of protein solubilisation ranged between 71% - 86% w/w. Four different processes are described, namely: 1) a soluble spray-dried FPH powder; 2) a liquid FPH; 3) a partly soluble, spray dried FPH powder and; 4) a crude, drum-dried protein for animal consumption. The amino acid profile of the FPH was identical to that of the par-ent substrate (fish frames)
Aligning Best Practices in Student Success and Career Preparedness: An Exploratory Study to Establish Pathways to STEM Careers for Undergraduate Minority Students
Undergraduate minority retention and graduation rates in STEM disciplines is a nationally recognized challenge for workforce growth and diversification. The Benjamin Banneker Scholars Program (BBSP) was a five-year undergraduate study developed to increase minority student retention and graduation rates at an HBCU. The program structure utilized a family model as a vehicle to orient students to the demands of college. Program activities integrated best K-12 practices and workforce skillsets to increase academic preparedness and career readiness. Findings revealed that a familial atmosphere improved academic performance, increased undergraduate research, and generated positive perceptions of faculty mentoring. Retention rates among BBSP participants averaged 88% compared to 39% among non-participant STEM peers. The BBSP graduation rate averaged 93% compared to 20% for non-participants. BBSP participants were more likely to gain employment in a STEM field or enter into a professional study. This paper furthers the body of research on STEM workforce diversity and presents a transferrable model for other institutions
Stroke-related Changes in Neuromuscular Fatigue of the Hip Flexors and Functional Implications
Objective: The aim of this study was to compare stroke-related changes in hip flexor neuromuscular fatigue of the paretic leg during a sustained isometric submaximal contraction with those of the nonparetic leg and controls and to correlate fatigue with clinical measures of function.
Design: Hip torques were measured during a fatiguing hip flexion contraction at 20% of the hip flexion maximal voluntary contraction in the paretic and nonparetic legs of 13 people with chronic stroke and 10 age-matched controls. In addition, the participants with stroke performed a fatiguing contraction of the paretic leg at the absolute torque equivalent to 20% maximal voluntary contraction of the nonparetic leg and were tested for self-selected walking speed (10-m Walk Test) and balance (Berg).
Results: When matching the nonparetic target torque, the paretic hip flexors had a shorter time to task failure compared with the nonparetic leg and controls (P \u3c 0.05). The time to failure of the paretic leg was inversely correlated with the reduction of hip flexion maximal voluntary contraction torque. Self-selected walking speed was correlated with declines in torque and steadiness. Berg-Balance scores were inversely correlated with the force fluctuation amplitude.
Conclusions: Fatigue and precision of contraction are correlated with walking function and balance after stroke
Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1.
UnlabelledDespite evidence for the prevalence of horizontal gene transfer of respiratory genes, little is known about how pathways functionally integrate within new hosts. One example of a mobile respiratory metabolism is bacterial chlorate reduction, which is frequently encoded on composite transposons. This implies that the essential components of the metabolism are encoded on these mobile elements. To test this, we heterologously expressed genes for chlorate reduction from Shewanella algae ACDC in the non-chlorate-reducing Shewanella oneidensis MR-1. The construct that ultimately endowed robust growth on chlorate included cld, a cytochrome c gene, clrABDC, and two genes of unknown function. Although strain MR-1 was unable to grow on chlorate after initial insertion of these genes into the chromosome, 11 derived strains capable of chlorate respiration were obtained through adaptive evolution. Genome resequencing indicated that all of the evolved chlorate-reducing strains replicated a large genomic region containing chlorate reduction genes. Contraction in copy number and loss of the ability to reduce chlorate were also observed, indicating that this phenomenon was extremely dynamic. Although most strains contained more than six copies of the replicated region, a single strain with less duplication also grew rapidly. This strain contained three additional mutations that we hypothesized compensated for the low copy number. We remade the mutations combinatorially in the unevolved strain and determined that a single nucleotide polymorphism (SNP) upstream of cld enabled growth on chlorate and was epistatic to a second base pair change in the NarP binding sequence between narQP and nrfA that enhanced growth.ImportanceThe ability of chlorate reduction composite transposons to form functional metabolisms after transfer to a new host is an important part of their propagation. To study this phenomenon, we engineered Shewanella oneidensis MR-1 into a chlorate reducer. We defined a set of genes sufficient to endow growth on chlorate from a plasmid, but found that chromosomal insertion of these genes was nonfunctional. Evolution of this inoperative strain into a chlorate reducer showed that tandem duplication was a dominant mechanism of activation. While copy number changes are a relatively rapid way of increasing gene dosage, replicating almost 1 megabase of extra DNA is costly. Mutations that alleviate the need for high copy number are expected to arise and eventually predominate, and we identified a single nucleotide polymorphism (SNP) that relieved the copy number requirement. This study uses both rational and evolutionary approaches to gain insight into the evolution of a fascinating respiratory metabolism
- …