6 research outputs found

    Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function

    Get PDF
    BACKGROUND ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs) in evolutionarily conserved regions of the mammalian ATRX promoter. RESULTS We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. CONCLUSIONS Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.This work was supported by Department of Zoology research grants

    Comparative analysis of the <it>ATRX </it>promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function

    No full text
    Abstract Background ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs) in evolutionarily conserved regions of the mammalian ATRX promoter. Results We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. Conclusions Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.</p

    Localisation of the Chromatin Remodelling Protein, ATRX in the Adult Testis

    Get PDF
    Mutations in ATRX (alpha-thalassaemia and mental retardation on the X-chromosome) can give rise to ambiguous or female genitalia in XY males, implying a role for ATRX in testicular development. Studies on ATRX have mainly focused on its crucial role in brain development and α-globin regulation; however, little is known about its function in sexual differentiation and its expression in the adult testis. Here we show that the ATRX protein is present in adult human and rat testis and is expressed in the somatic cells; Sertoli, Leydig, and peritubular myoid cells, and also in germ cells; spermatogonia and early meiotic spermatocytes. The granular pattern of ATRX staining is consistent with that observed in other cell-types and suggests a role in chromatin regulation. The findings suggest that ATRX in humans may play a role in adult spermatogenesis as well as in testicular development

    Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX

    No full text
    The chromatin-associated protein ATRX was originally identified because mutations in the ATRX gene cause a severe form of syndromal X-linked mental retardation associated with α-thalassemia. Half of all of the disease-associated missense mutations cluster in a cysteine-rich region in the N terminus of ATRX. This region was named the ATRX-DNMT3-DNMT3L (ADD) domain, based on sequence homology with a family of DNA methyltransferases. Here, we report the solution structure of the ADD domain of ATRX, which consists of an N-terminal GATA-like zinc finger, a plant homeodomain finger, and a long C-terminal α-helix that pack together to form a single globular domain. Interestingly, the α-helix of the GATA-like finger is exposed and highly basic, suggesting a DNA-binding function for ATRX. The disease-causing mutations fall into two groups: the majority affect buried residues and hence affect the structural integrity of the ADD domain; another group affects a cluster of surface residues, and these are likely to perturb a potential protein interaction site. The effects of individual point mutations on the folding state and stability of the ADD domain correlate well with the levels of mutant ATRX protein in patients, providing insights into the molecular pathophysiology of ATR-X syndrome

    Compound Effects of Point Mutations Causing Campomelic Dysplasia/autosomal Sex Reversal upon SOX9 Structure, Nuclear Transport DNA Binding, and Transcriptional Activation

    No full text
    Human mutations in the transcription factor SOX9 cause campomelic dysplasia/autosomal sex reversal. Here we identify and characterize two novel heterozygous mutations, F154L and A158T, that substitute conserved "hydrophobic core" amino acids of the high mobility group domain at positions thought to stabilize SOX9 conformation. Circular dichroism studies indicated that both mutations disrupt α-helicity within their high mobility group domain, whereas tertiary structure is essentially maintained as judged by fluorescence spectroscopy. In cultured cells, strictly nuclear localization was observed for wild type SOX9 and the F154L mutant; however, the A158T mutant showed a 2-fold reduction in nuclear import efficiency. Importin-β was demonstrated to be the nuclear transport receptor recognized by SOX9, with both mutant proteins binding importin-β with wild type affinity. Whereas DNA bending was unaffected, DNA binding was drastically reduced in both mutants (to 5% of wild type activity in F154L, 17% in A158T). Despite this large effect, transcriptional activation in cultured cells was only reduced to 26% in F154L and 62% in A158T of wild type activity, suggesting that a small loss of SOX9 transactivation activity could be sufficient to disrupt proper regulation of target genes during bone and testis formation. Thus, clinically relevant mutations of SOX9 affect protein structure leading to compound effects of reduced nuclear import and reduced DNA binding, the net effect being loss of transcriptional activation
    corecore