47 research outputs found

    The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

    Full text link
    We synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/1/gcb13160_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/2/gcb13160.pd

    Herbaceous Vegetation Responses to Gap Size within Natural Disturbance-Based Silvicultural Systems in Northeastern Minnesota, USA

    No full text
    The use of silvicultural systems that emulate aspects of natural disturbance regimes, including natural disturbance severities and scales, has been advocated as a strategy for restoring and conserving forest biodiversity in forests managed for wood products. Nonetheless, key information gaps remain regarding the impacts of these approaches on a wide range of taxa, including understory plant species. We investigated the 6- or 7-year response of herbaceous vegetation to natural disturbance-based silvicultural harvest gaps in a northern hardwood forest in Northeastern Minnesota. These results indicate that harvest gaps are effective in conserving understory plant diversity by promoting conditions necessary for disturbance-dependent understory plant species. However, harvest gaps also contained non-native invasive plant species

    Land Use Changes, Disturbances, and Their Interactions on Future Forest Aboveground Biomass Dynamics in the Northern US

    No full text
    Land use change (LUC), disturbances, and their interactions play an important role in regional forest carbon (C) dynamics. Here we quantified how these activities and events may influence future aboveground biomass (AGB) dynamics in forests using national forest inventory (NFI) and Landsat time series data in the Northern United States (US). Total forest AGB predictions were based on simulations of diameter growth, mortality, and recruitment using matrix growth models under varying levels of LUC and disturbance severity (low (L), medium (M), and high (H)) every five years from 2018 to 2098. Land use change included the integrated effects of deforestation and reforestation/afforestation (forest [F]→agriculture [A], settlements [S, urbanization/other], and A&S→F), specifically, conversion from F→A, F→S, F→A&S, A→F, S→F, and A&S→F. Disturbances included natural and anthropogenic disturbances such as wildfire, weather, insects and disease, and forest harvesting. Results revealed that, when simultaneously considering both medium LUC and disturbances, total forest AGB predictions of LUC + fire, LUC + weather, LUC + insect & disease, and LUC + harvest indicated substantial increases in regional C stocks (± standard deviation) from 1.88 (±0.13) to 3.29 (±0.28), 3.10 (±0.24), 2.91 (±0.19), and 2.68 (±0.17) Pg C, respectively, from 2018 to 2098. An uncertainty analysis with fuzzy sets suggested that medium LUC under disturbances would lead to greater forest AGB C uptake than undisturbed forest C uptake with high certainty, except for LUC + harvest. The matrix models in this study were parameterized using NFI and Landsat data from the past few decades. Thus, our results imply that if recent trends persist, LUC will remain an important driver of forest C uptake, while disturbances may result in C emissions rather than undisturbed forest C uptake by 2098. The combined effects of LUC and disturbances may serve as an important driver of C uptake and emissions in the Northern US well into the 21st century

    Long-Term Soil Productivity Study: 25-Year Vegetation Response to Varying Degrees of Disturbance in Aspen-Dominated Forest Spanning the Upper Lake States

    Get PDF
    Installations of the Long-Term Soil Productivity Study were established in northern Minnesota and Michigan at the Chippewa, Ottawa, and Huron-Manistee National Forests (NFs) in the early 1990s and have since provided a wealth of data for assessing the response of aspen-dominated forest ecosystems to varying levels of organic matter removal and soil compaction. An assessment of 25-year standing woody biomass indicates that neither whole-tree harvest nor whole-tree harvest combined with forest floor removal reduced forest productivity on silt-loam soils compared with conventional, stem-only harvest; however, moderate and heavy compaction did negatively impact aspen biomass and stem densities. In contrast, whole-tree harvest reduced standing biomass of aspen and all species combined on sandy soils at the Huron NF while compaction had no discernable impact. Neither treatment factor affected vegetation response at the Ottawa NF (clay soils), but reduced sample size at this site may have increased variability. Over all, the response of standing biomass and forest structure to organic matter removal and compaction treatments demonstrate that the sustainability of practices such as whole-tree harvesting and associated potential for soil impacts varies with site conditions, even when stands are dominated by the same species (e.g., Populus tremuloides).This proceeding is published as Curzon, Miranda T.; Palik, Brian J.; D’Amato, Anthony W.; Schwager, Julia. 2020. Long-term soil productivity study: 25-year vegetation response to varying degrees of disturbance in aspen-dominated forest spanning the Upper Lake States. In: Pile, Lauren S.; Deal, Robert L.; Dey, Daniel C.; Gwaze, David; Kabrick, John M.; Palik, Brian J.; Schuler, Thomas M., comps. The 2019 National Silviculture Workshop: a focus on forest management-research partnerships. Gen. Tech. Rep. NRS-P-193. Madison, WI: U.S. Department of Agriculture, Forest Service, Northern Research Station: 42-52. https://doi.org/10.2737/NRS-GTR-P-193-paper7.Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted

    Feedback

    No full text

    Soil texture and other site-level factors differentially affect growth of Scotch broom (Cytisus scoparius) and Douglas-fir (Pseudotsuga menziesii) seedlings in the western Pacific Northwest

    No full text
    The invasive shrub Scotch broom (Cytisus scoparius (L.) Link) is a pervasive threat to regenerating Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) stands in the Pacific Northwest, USA. Field observations indicate that the susceptibility of areas to Scotch broom invasion and dominance can vary by site. We selected ten sites throughout the western Pacific Northwest that spanned a gradient of soil textures and other factors to test the site-specific susceptibility of Douglas-fir to overtopping by Scotch broom. We expected to find that the ability of Scotch broom to dominate a site was mediated by site-level factors, particularly those influencing soil water – the most limiting factor to growth in the region. We found Scotch broom and Douglas-fir were inversely affected by site-level factors. In general, Douglas-fir absolute height growth rates were more competitive with those of Scotch broom on fine-textured soils than on more coarsely textured soils. We also found Douglas-fir to have a more dramatic response to increasing down woody material than Scotch broom. Scotch broom height growth approached an asymptote at 3 m. Sites with fast-growing Douglas-fir were able to surpass this height six to seven years after planting and appear likely to avoid suppression by Scotch broom.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Influence of transect length and downed woody debris abundance on precision of the line-intersect sampling method

    No full text
    Abstract Background Accurate downed woody debris (DWD) volume or mass estimates are needed for numerous applications such as fuel loading, forest carbon, and biodiversity/habitat assessments. The line-intersect sampling (LIS) method of inventorying DWD is widely used in forest inventories and ecological studies because it is time-efficient and unbiased. Despite its widespread use, the appropriate transect length needed to achieve a desired precision at a particular location has received relatively little attention. Methods We conducted intensive LIS sampling at 33 locations representing eight mature or old-growth forest types in northeastern USA, providing a range of forest conditions and DWD volumes (from 17 to 323 m3∙ha− 1). We used these empirical field data to test, through simulations, the effect of increasing transect length (up to 340 m at each location) on precision of associated LIS volume estimates. Importantly, we used a novel application of copula models to account for within-transect spatial autocorrelation of DWD volumes during our simulations, thereby properly addressing variance estimates. Results As expected, precision consistently improved with increasing cumulative transect length, and locations with lower DWD volumes required longer transects to achieve a given level of precision. We developed models relating precision, transect length, and DWD volume that allows us to gauge a suitable LIS transect length for desired precision levels. Conclusions LIS provides an attractive method for estimating DWD volume for a given localized area of interest. For the forest types sampled here, and for the particular copula model framework employed, transect lengths of ca. 120 m provide a reasonable level of precision, ranging from 18% to 60% coefficients of variation

    Retention forestry influences understory diversity and functional identity

    No full text
    In recent decades, a paradigm shift in forest management and associated policies has led to greater emphasis on harvest practices that retain mature, overstory trees in forest stands that would otherwise be clear-cut. While it is often assumed that the maintenance of compositional and structural complexity, such as that achieved through retention forestry approaches, will also mitigate negative impacts to functional diversity, empirical evidence of this relationship is sparse. We examined the effects of an aggregated retention system on taxonomic and functional diversity in a regenerating aspen-dominated forest. Sampling was conducted along transects arranged to capture the transition from harvested (regenerating) forest to mature, unharvested forest (both intact forest stands and 0.1 ha retention aggregates). We then assessed the magnitude and distance of edge effects on multiple indices of taxonomic and functional diversity as well as functional identity. Twelve years after harvest, the distance and magnitude of edge effects on functional and taxonomic diversity did not differ between the two unharvested patch sizes (intact vs. aggregate); however, intact forest exhibited greater resistance to edge effects and greater depth of edge influence into harvested areas for some traits compared to aggregates. Analyses relying on functional traits were generally applicable across sites within a highly variable forest type, and our results demonstrate the promise of using functional traits to assess management impacts on plant diversity across a landscape. Aggregates maintained some functional attributes associated with interior forest and influenced adjacent regeneration. However, trends in some traits (i.e., shade tolerance and seed mass), particularly in the seedling layer, suggest aggregates of this size provide primarily edge habitat.This article is published as Curzon, Miranda T., Christel C. Kern, Susan C. Baker, Brian J. Palik, and Anthony W. D’Amato. "Retention forestry influences understory diversity and functional identity." Ecological Applications 30 (2020): e02097. doi: 10.1002/eap.2097.</p
    corecore