7,630 research outputs found
Forming College-Going Knowledge: An Analysis of Parents with Eighth Grade Students
The context surrounding today’s college-going youth is different from when their parents pursued higher education in the late 1980s to early 2000s. I sought to understand how these parents, now as adults with children on the doorstep of their own college-going process, form knowledge about 21st century college-going and what sources these parents suspect they will utilize to form knowledge. I created two main research questions around how parents form knowledge about college-going and what sources they suspect they will use. My theoretical framework was transformative learning theory and existing college-going scholarship. I conducted a qualitative research study using constructivist grounded theory methodology. Ten participants who met the criteria of being parents of 8th graders, as well as parents who were not currently enrolled at the research site were interviewed. The semi- structured interview guide was designed to reveal learning habits, information sources, and assess how closely parents followed transformative learning theory’s stages. My main findings are that parents have an existing college-going schema. There are benefits and limitations to parents holding this existing knowledge. The second main finding is that parents found discontent with their existing knowledge and sought to reframe their child’s soon-to-come college-going process. The last main finding is that parents suspect they will leverage their network sources to gather information about college-going. I conclude by connecting my findings to my theoretical framework and offer a summary theory. Three major implications that address the high school, the higher education field, and the family are shared. I provide seven recommended actions for consideration at the high school level, nine recommended actions for consideration for the higher education industry, and nine recommended actions for families that are influenced by my findings. Four future research studies to deepen the understanding of parents’ formation of college-going knowledge are presented, too. Keywords: adult learning, transformative learning theory, college-going, parents, high school, technology, community, college admissions, private high school admissions
Gender Politics and Secure Services For Women: Reflections on a study of staff understandings of challenging behaviour.
This paper discusses the findings of a Q methodological study that investigated the complexity of professional understandings of (attitudes towards) residents in a secure unit for women with learning disabilities and challenging behaviours. Particular attention is afforded to the critical debate regarding women in psychiatric and secure care, including the significant contribution made to this literature by feminist perspectives. A multiprofessional group of staff (n = 38) participated in the study and nine distinct accounts of women's challenging behaviour are described. Despite a considerable amount of recent policy concern with the position of women in psychiatric services, the findings of this research suggest that many front line staff are reluctant to highlight gender in their explanations of women's behaviour. This supports the assertion by Williams et al. (2001), who were involved in the National Gender Training Initiative (NGTI), that most critical theorizing about women's mental health has had minimal impact at the level of individuals’ understandings of these important issues. This state of affairs suggests a powerful case for the expansion of staff training as provided in the NGTI, which makes gender central to understanding and emphasizes feminist perspectives
Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO_2)Te^(6+)O_6, the first natural uranyl tellurate
Markcooperite, Pb_2(UO_2)Te^(6+)O_6, is a new tellurate from Otto Mountain near Baker, California, named in honor of Mark A. Cooper of the University of Manitoba for his contributions to mineralogy. The new mineral occurs on fracture surfaces and in small vugs in brecciated quartz veins. Markcooperite is directly associated with bromian chlorargyrite, iodargyrite, khinite-4O, wulfenite, and four other new tellurates: housleyite, thorneite, ottoite, and timroseite. Various other secondary minerals occur in the veins, including two other new secondary tellurium minerals: paratimroseite and telluroperite. Markcooperite is monoclinic, space group P2_1/c, a = 5.722(2), b = 7.7478(2), c = 7.889(2) Å, β = 90.833(5)°, V = 349.7(2) Å^3, and Z = 2. It occurs as pseudotetragonal prisms to 0.2 mm with the forms {100} and {011} and as botryoidal intergrowths to 0.3 mm in diameter; no twinning was observed. Markcooperite is orange and transparent, with a light orange streak and adamantine luster, and is non-fluorescent. Mohs hardness is estimated at 3. The mineral is brittle, with an irregular fracture and perfect {100} cleavage. The calculated density is 8.496 g/cm3 based on the empirical formula. Markcooperite is biaxial (+), with indices of refraction α= 2.11, β = 2.12, γ= 2.29 calculated using the Gladstone-Dale relationship, measured α-β birefringence of 0.01 and measured 2V of 30(5)°. The optical orientation is X = c, Y = b, Z = a. The mineral is slightly pleochroic in shades of orange, with absorption: X > Y = Z. No dispersion was observed. Electron microprobe analysis provided PbO 50.07, TeO_3 22.64, UO_3 25.01, Cl 0.03, O≡Cl –0.01, total 97.74 wt%; the empirical formula (based on O+Cl = 8) is Pb_(2.05)U_(0.80)Te^(6+)_(1.18)O_(7.99)Cl_(0.01). The strongest powder X-ray diffraction lines are [d_(obs) in Å (hkl) I]: 3.235 (120, 102, 1[overbar]02) 100, 2.873 (200) 40, 2.985 (1[overbar]21, 112, 121) 37, 2.774 (022) 30, 3.501 (021, 012) 29, 2.220 (221, 2[overbar]21, 212) 23, 1.990 (222, 2[overbar]22) 21, and 1.715 (320) 22. The crystal structure (R_1 = 0.052) is based on sheets of corner-sharing uranyl square bipyramids and tellurate octahedra, with Pb atoms between the sheets. Markcooperite is the first compound to show Te^(6+) substitution for U^(6+) within the same crystallographic site. Markcooperite is structurally related to synthetic Pb(UO_2)O_2
Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb_2Cu_5^(2+)(Te^(6+)O_6)_2(OH)_2, and paratimroseite, Pb_2Cu_4^(2+)(Te^(6+)O_6)_2(H_2O)_2, two new tellurates with Te-Cu polyhedral sheets
Timroseite, Pb_2Cu_5^(2+)(Te^(6+)O_6)_2(OH)_2, and paratimroseite, Pb_2Cu_4^(2+)(Te^(6+)O_6)_2(H_2O)_2, are two new tellurates from Otto Mountain near Baker, California. Timroseite is named in honor of Timothy (Tim) P. Rose and paratimroseite is named for its relationship to timroseite. Both new minerals occur on fracture surfaces and in small vugs in brecciated quartz veins. Timroseite is directly associated with acanthite, cerussite, bromine-rich chlorargyrite, chrysocolla, gold, housleyite, iodargyrite, khinite-4O, markcooperite, ottoite, paratimroseite, thorneite, vauquelinite, and wulfenite. Paratimroseite is directly associated with calcite, cerussite, housleyite, khinite-4O, markcooperite, and timroseite. Timroseite is orthorhombic, space group P2_1nm, a = 5.2000(2), b = 9.6225(4), c = 11.5340(5) Å, V = 577.13(4) Å^3, and Z = 2. Paratimroseite is orthorhombic, space group P2_12_12_1, a = 5.1943(4), b = 9.6198(10), c = 11.6746(11) Å, V = 583.35(9) Å^3, and Z = 2. Timroseite commonly occurs as olive to lime green, irregular, rounded masses and rarely in crystals as dark olive green, equant rhombs, and diamond-shaped plates in subparallel sheaf-like aggregates. It has a very pale yellowish green streak, dull to adamantine luster, a hardness of about 2 1/2 (Mohs), brittle tenacity, irregular fracture, no cleavage, and a calculated density of 6.981 g/cm^3. Paratimroseite occurs as vibrant "neon" green blades typically intergrown in irregular clusters and as lime green botryoids. It has a very pale green streak, dull to adamantine luster, a hardness of about 3 (Mohs), brittle tenacity, irregular fracture, good {001} cleavage, and a calculated density of 6.556 g/cm^3. Timroseite is biaxial (+) with a large 2V, indices of refraction > 2, orientation X = b, Y = a, Z = c and pleochroism: X = greenish yellow, Y = yellowish green, Z = dark green (Z > Y > X). Paratimroseite is biaxial (–) with a large 2V, indices of refraction > 2, orientation X = c, Y = b, Z = a and pleochroism: X = light green, Y = green, Z = green (Y = Z >> X). Electron microprobe analysis of timroseite provided PbO 35.85, CuO 29.57, TeO_3 27.75, Cl 0.04, H_2O 1.38 (structure), O≡Cl –0.01, total 94.58 wt%; the empirical formula (based on O+Cl = 14) is Pb_(2.07) Cu^(2+)_(4.80)Te^(6+)_(2.04)O_(12)(OH)_(1.98)Cl_(0.02). Electron microprobe analysis of paratimroseite provided PbO 36.11, CuO 26.27, TeO_3 29.80, Cl 0.04, H_2O 3.01 (structure), O≡Cl –0.01, total 95.22 wt%; the empirical formula (based on O+Cl = 14) is Pb_(1.94)Cu^(2+)_(3.96)Te^(6+)_(2.03)O_(12)(H_2O)_(1.99)Cl_(0.01). The strongest powder X-ray diffraction lines for timroseite are [d_(obs) in Å (hkl) I]: 3.693 (022) 43, 3.578 (112) 44, 3.008 (023) 84, 2.950 (113) 88, 2.732 (130) 100, 1.785 (multiple) 33, 1.475 (332) 36; and for paratimroseite 4.771 (101) 76, 4.463 (021) 32, 3.544 (120) 44, 3.029 (023,122) 100, 2.973 (113) 48, 2.665 (131) 41, 2.469 (114) 40, 2.246 (221) 34. The crystal structures of timroseite (R_1 = 0.029) and paratimroseite (R_1 = 0.039) are very closely related. The structures are based upon edge- and corner-sharing sheets of Te and Cu polyhedra parallel to (001) and the sheets in both structures are identical in topology and virtually identical in geometry. In timroseite, the sheets are joined to one another along c by sharing the apical O atoms of Cu octahedra, as well as by sharing edges and corners with an additional CuO_5 square pyramid located between the sheets. The sheets in paratimroseite are joined only via Pb-O and H bonds
Lead-tellurium oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb_3Te^(4+)O_4Cl_2, the Te analog of perite and nadorite
Telluroperite, Pb_3Te^(4+)O_4Cl_2, is a new tellurite from Otto Mountain near Baker, California. The new mineral occurs on fracture surfaces and in small vugs in brecciated quartz veins in direct association with acanthite, bromine-rich chlorargyrite, caledonite, cerussite, galena, goethite, and linarite. Various other secondary minerals occur in the veins, including six new tellurates, housleyite, markcooperite, paratimroseite, ottoite, thorneite, and timroseite. Telluroperite is orthorhombic, space group Bmmb, a = 5.5649(6), b = 5.5565(6), c = 12.4750(14) Å, V = 386.37(7) Å^3, and Z = 2. The new mineral occurs as rounded square tablets and flakes up to 0.25 mm on edge and 0.02 mm thick. The form {001} is prominent and is probably bounded by {100}, {010}, and {110}. It is bluish-green and transparent, with a pale bluish-green streak and adamantine luster. The mineral is non-fluorescent. Mohs hardness is estimated to be between 2 and 3. The mineral is brittle, with a curved fracture and perfect {001} cleavage. The calculated density based on the empirical formula is 7.323 g/cm^3. Telluroperite is biaxial (–), with very small 2V (~10°). The average index of refraction is 2.219 calculated by the Gladstone-Dale relationship. The optical orientation is X = c and the mineral exhibits moderate bluish-green pleochrosim; absorption: X < Y = Z. Electron microprobe analysis provided PbO 72.70, TeO_2 19.26, Cl 9.44, O≡Cl –2.31, total 99.27 wt%. The empirical formula (based on O+Cl = 6) is Pb_(2.79)Te_(1.03)^(4+)O_(3.72)Cl_(2.28). The six strongest powder X-ray diffraction lines are [d_(obs) in Å (hkl) I]: 3.750 (111) 58, 2.857 (113) 100, 2.781 (020, 200) 43, 2.075 (024, 204) 31, 1.966 (220) 30, and 1.620 (117, 313, 133) 52. The crystal structure (R_1 = 0.056) is based on the Sillén X_1 structure-type and consists of a three-dimensional structural topology with lead-oxide halide polyhedra linked to tellurium/lead oxide groups. The mineral is named for the relationship to perite and the dominance of Te (with Pb) in the Bi site of perite
Magnocellular and parvocellular influences on reflexive attention
AbstractPrevious studies have provided conflicting evidence regarding whether the magnocellular (M) or parvocellular (P) visual pathway is primarily responsible for triggering involuntary orienting. Here, we used event-related potentials (ERPs) to provide new evidence that both the M and P pathways can trigger attentional capture and bias visual processing at multiple levels. Specifically, cued-location targets elicited enhanced activity, relative to uncued-location targets, at both early sensory processing levels (indexed by the P1 component) and later higher-order processing stages (as indexed by the P300 component). Furthermore, the present results show these effects of attentional capture were not contingent on the feature congruency between the cue and expected target, providing evidence that this biasing of visual processing was not dependant on top-down expectations or within-pathway priming
- …