194 research outputs found

    Does the Constitution Allow Private Companies to Use Eminent Domain Against a State? Penn East Pipeline Co., LLC v. New Jersey

    Get PDF
    In 2021 the United States Supreme Court decided in the case PennEast Pipeline Co. v. New Jersey that Section 717(h) of the Natural Gas Act authorized the Federal Energy Regulatory Commission (FERC) to delegate the government’s eminent domain power to private companies. The Court’s decision allows a private company to condemn all “necessary rights-of-way,” whether privately-owned or state-owned land. This case note explores the history of the government’s eminent domain power and the states’ Eleventh Amendment immunity from lawsuits. The majority opinion in PennEast reasoned that the states waived their sovereign immunity at the ratification of the Constitution. Thus, according to the majority PennEast’s condemnation of New Jersey-owned land to build a pipeline does not offend state sovereignty. This Note provides the legal background for the claims at issue in PennEast and examines the case’s procedural posture. Ultimately, this Note concludes that the United States Supreme Court decided the case incorrectly. The idea that a nongovernment party can take land from a nonconsenting state is contrary to state sovereignty and the Eleventh Amendment

    Supporting Data for the Characterization of PNA-DNA Four-Way Junctions

    Get PDF
    Holliday or DNA four-way junctions (4WJs) are cruciform/bent structures composed of four DNA duplexes. 4WJs are key intermediates in homologous genetic recombination and double-strand break repair. To investigate 4WJs in vitro, junctions are assembled using four asymmetric DNA strands. The presence of four asymmetric strands about the junction branch point eliminates branch migration, and effectively immobilizes the resulting 4WJ. The purpose of these experiments is to show that immobile 4WJs composed of DNA and peptide nucleic acids (PNAs) can be distinguished from contaminating labile nucleic acid structures. These data compare the electrophoretic mobility of hybrid PNA–DNA junctions vs. i) a classic immobile DNA 4WJ, J1 and ii) contaminating nucleic acid structures

    ARF and p53 coordinate tumor suppression of an oncogenic IFN-β-STAT1-ISG15 signaling axis

    Get PDF
    SummaryThe ARF and p53 tumor suppressors are thought to act in a linear pathway to prevent cellular transformation in response to various oncogenic signals. Here, we show that loss of p53 leads to an increase in ARF protein levels, which function to limit the proliferation and tumorigenicity of p53-deficient cells by inhibiting an IFN-β-STAT1-ISG15 signaling axis. Human triple-negative breast cancer (TNBC) tumor samples with coinactivation of p53 and ARF exhibit high expression of both STAT1 and ISG15, and TNBC cell lines are sensitive to STAT1 depletion. We propose that loss of p53 function and subsequent ARF induction creates a selective pressure to inactivate ARF and propose that tumors harboring coinactivation of ARF and p53 would benefit from therapies targeted against STAT1 and ISG15 activation

    Tiny scale opacity fluctuations from VLBA, MERLIN and VLA observations of HI absorption toward 3C 138

    Full text link
    The structure function of opacity fluctuations is a useful statistical tool to study tiny scale structures of neutral hydrogen. Here we present high resolution observation of HI absorption towards 3C 138, and estimate the structure function of opacity fluctuations from the combined VLA, MERLIN and VLBA data. The angular scales probed in this work are ~ 10-200 milliarcsec (about 5-100 AU). The structure function in this range is found to be well represented by a power law S_tau(x) ~ x^{beta} with index beta ~ 0.33 +/- 0.07 corresponding to a power spectrum P_tau(U) ~ U^{-2.33}. This is slightly shallower than the earlier reported power law index of ~ 2.5-3.0 at ~ 1000 AU to few pc scales. The amplitude of the derived structure function is a factor of ~ 20-60 times higher than the extrapolated amplitude from observation of Cas A at larger scales. On the other hand, extrapolating the AU scale structure function for 3C 138 predicts the observed structure function for Cas A at the pc scale correctly. These results clearly establish that the atomic gas has significantly more structures in AU scales than expected from earlier pc scale observations. Some plausible reasons are identified and discussed here to explain these results. The observational evidence of a shallower slope and the presence of rich small scale structures may have implications for the current understanding of the interstellar turbulence.Comment: 6 pages, 5 figures. Accepted for publication in ApJ. The definitive version will be available at http://iopscience.iop.org

    Clinical Next-Generation Sequencing Pipeline Outperforms a Combined Approach Using Sanger Sequencing and Multiplex Ligation-Dependent Probe Amplification in Targeted Gene Panel Analysis

    Get PDF
    Advances in next-generation sequencing (NGS) have facilitated parallel analysis of multiple genes enabling the implementation of cost-effective, rapid, and high-throughput methods for the molecular diagnosis of multiple genetic conditions, including the identification of BRCA1 and BRCA2 mutations in high-risk patients for hereditary breast and ovarian cancer. We clinically validated a NGS pipeline designed to replace Sanger sequencing and multiplex ligation-dependent probe amplification analysis and to facilitate detection of sequence and copy number alterations in a single test focusing on a BRCA1/BRCA2 gene analysis panel. Our custom capture library covers 46 exons, including BRCA1 exons 2, 3, and 5 to 24 and BRCA2 exons 2 to 27, with 20 nucleotides of intronic regions both 5′ and 3′ of each exon. We analyzed 402 retrospective patients, with previous Sanger sequencing and multiplex ligation-dependent probe amplification results, and 240 clinical prospective patients. One-hundred eighty-three unique variants, including sequence and copy number variants, were detected in the retrospective (n = 95) and prospective (n = 88) cohorts. This standardized NGS pipeline demonstrated 100% sensitivity and 100% specificity, uniformity, and high-depth nucleotide coverage per sample (approximately 7000 reads per nucleotide). Subsequently, the NGS pipeline was applied to the analysis of larger gene panels, which have shown similar uniformity, sample-to-sample reproducibility in coverage distribution, and sensitivity and specificity for detection of sequence and copy number variants
    • …
    corecore