92 research outputs found

    Subtle variation in shade avoidance responses may have profound consequences for plant competitiveness

    Get PDF
    Background and Aims: Although phenotypic plasticity has been shown to be beneficial for plant competitiveness for light, there is limited knowledge on how variation in these plastic responses plays a role in determining competitiveness. Methods: A combination of detailed plant experiments and functional–structural plant (FSP) modelling was used that captures the complex dynamic feedback between the changing plant phenotype and the within-canopy light environment in time and 3-D space. Leaf angle increase (hyponasty) and changes in petiole elongation rates in response to changes in the ratio between red and far-red light, two important shade avoidance responses in Arabidopsis thaliana growing in dense population stands, were chosen as a case study for plant plasticity. Measuring and implementing these responses into an FSP model allowed simulation of plant phenotype as an emergent property of the underlying growth and response mechanisms. Key Results: Both the experimental and model results showed that substantial differences in competitiveness may arise between genotypes with only marginally different hyponasty or petiole elongation responses, due to the amplification of plant growth differences by small changes in plant phenotype. In addition, this study illustrated that strong competitive responses do not necessarily have to result in a tragedy of the commons; success in competition at the expense of community performance. Conclusions: Together, these findings indicate that selection pressure could probably have played a role in fine-tuning the sensitive shade avoidance responses found in plants. The model approach presented here provides a novel tool to analyse further how natural selection could have acted on the evolution of plastic responses

    Understanding and optimizing species mixtures using functional–structural plant modelling

    Get PDF
    Plant species mixtures improve productivity over monocultures by exploiting species complementarities for resource capture in time and space. Complementarity results in part from competition avoidance responses that maximize resource capture and growth of individual plants. Individual organs accommodate to local resource levels, e.g. with regard to nitrogen content and photosynthetic capacity or by size (e.g. shade avoidance). As a result, the resource acquisition in time and space is improved and performance of the community as a whole is increased. Modelling is needed to unravel the primary drivers and subsequent dynamics of complementary growth responses in mixtures. Here, we advocate using functional–structural plant (FSP) modelling to analyse the functioning of plant mixtures. In FSP modelling, crop performance is a result of the behaviour of the individual plants interacting through competitive and complementary resource acquisition. FSP models can integrate the interactions between structural and physiological plant responses to the local resource availability and strength of competition, which drive resource capture and growth of individuals in species mixtures. FSP models have the potential to accelerate mixed-species plant research, and thus support the development of knowledge that is needed to promote the use of mixtures towards sustainably increasing crop yields at acceptable input levels

    Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading. A simulation study using a functional-structural plant model

    Get PDF
    Background and AimsShading by an overhead canopy (i.e., canopy shading) entails simultaneous changes in both photosynthetically active radiation (PAR) and red to far-red ratio (R:FR). As plant responses to PAR (e.g. changes in leaf photosynthesis) are different from responses to R:FR (e.g. changes in plant architecture), and these responses occur at both organ and plant levels, understanding plant photosynthesis responses to canopy shading needs separate analysis of responses to reductions in PAR and R:FR at different levels.MethodsIn a greenhouse experiment we subjected plants of woody perennial rose (Rosa hybrida) to different light treatments, and so separately quantified the effects of reductions in PAR and R:FR on leaf photosynthetic- and plant architectural traits. Using a functional-structural plant model, we separately quantified the effects of responses in these traits on plant photosynthesis, and evaluated the relative importance of changes of individual traits for plant photosynthesis under mild and heavy shading caused by virtual overhead canopies.Key ResultsModel simulations showed that the individual trait responses to canopy shading could have positive and negative effects on plant photosynthesis. Under mild canopy shading, trait responses to reduced R:FR on photosynthesis were generally negative and with a larger magnitude than effects of responses to reduced PAR. Conversely, under heavy canopy shading, the positive effects of trait responses to reduced PAR became dominant. The combined effects of low-R:FR responses and low-PAR responses on plant photosynthesis were not equal to the sum of the separate effects, indicating interactions between individual trait responses.ConclusionsOur simulation results indicate that under canopy shading, the relative importance of plant responses to PAR and R:FR for plant photosynthesis changes with shade levels. This suggests that the adaptive significance of plant plasticity responses to one shading factor depends on plant responses to the other

    Testing for disconnection and distance effects on physiological self-recognition within clonal fragments of Potentilla reptans

    Get PDF
    Evidence suggests that belowground self-recognition in clonal plants can be disrupted between sister ramets by the loss of connections or long distances within a genet. However, these results may be confounded by severing connections between ramets in the setups. Using Potentilla reptans, we examined severance effects in a setup that grew ramet pairs with connections either intact or severed. We showed that severance generally reduced new stolon mass but had no effect on root allocation of ramets. However, it did reduce root mass of younger ramets of the pairs. We also explored evidence for physiological self-recognition with another setup that avoided severing connections by manipulating root interactions between closely connected ramets, between remotely connected ramets and between disconnected ramets within one genet. We found that ramets grown with disconnected neighbors had less new stolon mass, similar root mass but higher root allocation as compared to ramets grown with connected neighbors. There was no difference in ramet growth between closely connected- and remotely connected-neighbor treatments. We suggest that severing connections affects ramet interactions by disrupting their physiological integration. Using the second setup, we provide unbiased evidence for physiological self-recognition, while also suggesting that it can persist over long distances

    Ecological significance of light quality in optimizing plant defence

    Get PDF
    Plants balance the allocation of resources between growth and defence to optimize fitness in a competitive environment. Perception of neighbour-detection cues, such as a low ratio of red to far-red (R:FR) radiation, activates a suite of shade-avoidance responses that include stem elongation and upward leaf movement, whilst simultaneously downregulating defence. This downregulation is hypothesized to benefit the plant either by mediating the growth-defence balance in favour of growth in high plant densities or, alternatively, by mediating defence of individual leaves such that those most photosynthetically productive are best protected. To test these hypotheses, we used a 3D functional–structural plant model of Brassica nigra that mechanistically simulates the interactions between plant architecture, herbivory, and the light environment. Our results show that plant-level defence expression is a strong determinant of plant fitness and that leaf-level defence mediation by R:FR can provide a fitness benefit in high densities. However, optimal plant-level defence expression does not decrease monotonically with plant density, indicating that R:FR mediation of defence alone is not enough to optimize defence between densities. Therefore, assessing the ecological significance of R:FR-mediated defence is paramount to better understand the evolution of this physiological linkage and its implications for crop breeding.</p

    Effects of sublethal single, simultaneous and sequential abiotic stresses on phenotypic traits of Arabidopsis thaliana

    Get PDF
    Plant responses to abiotic stresses are complex and dynamic, and involve changes in different traits, either as the direct consequence of the stress, or as an active acclimatory response. Abiotic stresses frequently occur simultaneously or in succession, rather than in isolation. Despite this, most studies have focused on a single stress and single or few plant traits. To address this gap, our study comprehensively and categorically quantified the individual and combined effects of three major abiotic stresses associated with climate change (flooding, progressive drought and high temperature) on 12 phenotypic traits related to morphology, development, growth and fitness, at different developmental stages in four Arabidopsis thaliana accessions. Combined sublethal stresses were applied either simultaneously (high temperature and drought) or sequentially (flooding followed by drought). In total, we analysed the phenotypic responses of 1782 individuals across these stresses and different developmental stages. Overall, abiotic stresses and their combinations resulted in distinct patterns of effects across the traits analysed, with both quantitative and qualitative differences across accessions. Stress combinations had additive effects on some traits, whereas clear positive and negative interactions were observed for other traits: 9 out of 12 traits for high temperature and drought, 6 out of 12 traits for post-submergence and drought showed significant interactions. In many cases where the stresses interacted, the strength of interactions varied across accessions. Hence, our results indicated a general pattern of response in most phenotypic traits to the different stresses and stress combinations, but it also indicated a natural genetic variation in the strength of these responses. This includes novel results regarding the lack of a response to drought after submergence and a decoupling between leaf number and flowering time after submergence. Overall, our study provides a rich characterization of trait responses of Arabidopsis plants to sublethal abiotic stresses at the phenotypic level and can serve as starting point for further in-depth physiological research and plant modelling efforts

    Modelling canopy photosynthesis using parameters determined from simple non-destructive measurements

    No full text
    Most models for canopy photosynthesis require a large number of parameters as input which have to be determined by means of direct measurements. Such measurements are usually expensive, time consuming and destructive. The objective of the present study was, therefore, to develop a simple but accurate canopy photosynthesis model based on a minimum number of parameters that can be determined non-destructively. The results from previous studies were used to derive an empirical expression which describes the variation in leaf photosynthetic capacity (P(m)) as a function of the light distribution in the canopy. The light distribution itself was calculated with a simple model which assumes only three leaf angle classes (0-30°, 30-60°and 60-90°). The leaf area index was determined indirectly from measurements of direct radiation below the canopy. The result was a model for canopy photosynthesis that requires only a few parameters. These parameters are the leaf photosynthetic capacity at the top of the canopy, the relative frequency of leaves in each of the three leaf angle classes, and the fraction of direct radiation below the canopy. Each of these parameters can be determined by means of simple non-destructive measurements. The model was applied to dense stands of two monocoryledonous species: rice (Oryza sativa L.) and pearl millet (Pennisetum americanum (L.) K. Schum.). The rates of canopy photosynthesis thus calculated were compared to those obtained with a more elaborate reference model. The differences between the values obtained with the two models were small. The present photosynthesis model can, therefore, be considered to be a suitable alternative for the more elaborate model. It was further discussed that, since the model is based on purely non-destructive measurements, it will be particularly useful in cases where it is required to estimate canopy photosynthesis at regular intervals over a length of time or in stands of vegetation that cover large areas of land
    • …
    corecore