4 research outputs found

    LEAF AREA INDEX MONITORING AND PROTECTIONG THROUGH REMOTE SENSING IN THE ITATIAIA NATIONAL PARK

    No full text
    Satellite images of earth observation and meteorological sensors have been used for monitoring land use. Recently products obtained from satellite images have been disseminated, among them, several vegetation indices. EUMETSAT, through the Land –SAF, offers, among other products, the Leaf Area Index (LAI). Daily LAI products have beem acquired in raster format corresponding from 01/01/2010 to 30/12/2010. From a pixel located in the central portion of the Itatiaia National Park, a time series was generated, which was analyzed aiming at assessing the dynamics of leaf area index. The tendency observed in this period indicates that LAI decreased during 2010. It was possible to observe that changes in vegetation have close relationship with changes in rainfall and fires that affect the region. The ARIMA (7 1 0) model was able to describe the behavior of the LAI series, producing white noise and indicating correlations among 1, 6 and 7 days among the past observations. The prediction for future values resulted in an average error of 2.74%, indicating the potential of the model to identify changes in vegetation. Models of ARIMA class, in conjunction with orbital products, stand out as promises for use in the analysis of the vegetation of protected areas.\u

    Análise espaço-temporal da evapotranspiração de referência para Minas Gerais Spatial-time analysis of evapotranspiration reference in the Minas Gerais State, Brazil

    No full text
    Objetivou-se com esta pesquisa, analisar a demanda hídrica em Minas Gerais, representada pela evapotranspiração de referência (ET0), durante o ano. Os valores de ET0 foram estimados pelo método de Penman-Monteith-FAO a partir de dados diários originados de registros de 42 estações climatológicas do Instituto Nacional de Meteorologia (INMET) referentes a um período de 17 anos (1961 a 1978). No geral, os resultados mostraram que a ET0 é bastante variável em Minas Gerais, chegando a apresentar valores médios de 914 até valores de 1.677 mm ano-1. As maiores variações, tanto espaciais como temporais, são registradas no norte do Estado, onde também ocorrem os maiores valores de ET0. O Estado de Minas Gerais apresenta um déficit hídrico anual em aproximadamente 50% de sua área total. Os meses que apresentaram as maiores e menores demandas hídricas no Estado foram janeiro e junho, respectivamente. Em função da nítida distinção que apresentaram os dados de ET0 geoespacializados nas regiões do Estado de Minas Gerais, o conhecimento do correto valor da ET0 em cada localidade trará benefícios aos produtores no manejo da irrigação.<br>The knowledge of information that expresses the water requirement of the plants is a fundamental issue for the irrigation process. The objective of this research was to analyze the water requirement in Minas Gerais State, Brazil, represented by the evapotranspiration reference (ET0), during the year. The ET0 values were estimated through the Penman-Monteith-FAO method starting from daily data originated by the registration of 42 climatological stations of the Instituto Nacional de Meteorologia (INMET) referring to a period of 17 years (1961 to 1978). In general, the results showed that the evapotranspiration reference is plenty variable in Minas Gerais, reaching medium values from 914 to 1.677 mm year-1. The largest variations, such as spatial and temporal, are registered in the north part of the State, where happen the greatest values of ET0. The Minas Gerais State presents a annual water deficit in approximately 50% of its total area. The months that presented the greatest and smallest water requirements in the State were January and June, respectively. According to the clear distinction that presented the data of mapping ET0 in the different regions in the Minas Gerais State, it becames obsvouly that the knowledge of the correct ET0 values in each locality will bring much benefit to farm-producers in the irrigation scheduling

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    No full text
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42·4% vs 44·2%; absolute difference -1·69 [-9·58 to 6·11] p=0·67; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5-8] vs 6 [5-8] cm H2O; p=0·0011). ICU mortality was higher in MICs than in HICs (30·5% vs 19·9%; p=0·0004; adjusted effect 16·41% [95% CI 9·52-23·52]; p&lt;0·0001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0·80 [95% CI 0·75-0·86]; p&lt;0·0001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status
    corecore