33 research outputs found

    Microflow Simulations via the Lattice Boltzmann Method

    Get PDF
    The exact solution to the hierarchy of nonlinear lattice Boltzmann kinetic equations, for the stationary planar Couette flow for any Knudsen number was presented by S. Ansumali et al. [Phys. Rev. Lett., 98 (2007), 124502]. In this paper, simulation results at a non-vanishing value of the Knudsen number are compared with the closed-form solutions for the higher-order moments. The order of convergence to the exact solution is also studied. The lattice Boltzmann simulations are in excellent agreement with the exact solutio

    Two-fluid kinetic theory for dilute polymer solutions

    Get PDF
    We provide a Boltzmann-type kinetic description for dilute polymer solutions based on two-fluid theory. This Boltzmann-type description uses a quasiequilibrium based relaxation mechanism to model collisions between a polymer dumbbell and a solvent molecule. The model reproduces the desired macroscopic equations for the polymer-solvent mixture. The proposed kinetic scheme leads to a numerical algorithm which is along the lines of the lattice Boltzmann method. Finally, the algorithm is applied to describe the evolution of a perturbed Kolmogorov flow profile, whereby we recover the major elastic effect exhibited by a polymer solution, specifically, the suppression of the original inertial instability

    Energy Conserving Lattice Boltzmann Models for Incompressible Flow Simulations

    Get PDF
    In this paper, we highlight the benefits resulting from imposing energy-conserving equilibria in entropic lattice Boltzmann models for isothermal flows. The advantages are documented through a series of numerical simulations, such as Taylor-Green vortices, cavity flow and flow past a spher

    Entropic Lattice Boltzmann Simulation of the Flow Past Square Cylinder

    Full text link
    Minimal Boltzmann kinetic models, such as lattice Boltzmann, are often used as an alternative to the discretization of the Navier-Stokes equations for hydrodynamic simulations. Recently, it was argued that modeling sub-grid scale phenomena at the kinetic level might provide an efficient tool for large scale simulations. Indeed, a particular variant of this approach, known as the entropic lattice Boltzmann method (ELBM), has shown that an efficient coarse-grained simulation of decaying turbulence is possible using these approaches. The present work investigates the efficiency of the entropic lattice Boltzmann in describing flows of engineering interest. In order to do so, we have chosen the flow past a square cylinder, which is a simple model of such flows. We will show that ELBM can quantitatively capture the variation of vortex shedding frequency as a function of Reynolds number in the low as well as the high Reynolds number regime, without any need for explicit sub-grid scale modeling. This extends the previous studies for this set-up, where experimental behavior ranging from Re∼O(10)Re\sim O(10) to Re≤1000Re\leq 1000 were predicted by a single simulation algorithm.Comment: 12 pages, 5 figures, to appear in Int. J. Mod. Phys.
    corecore