35 research outputs found
Disparities in the Operative Experience Between Female and Male General Surgery Residents: A Multi-institutional Study From the US ROPE Consortium
OBJECTIVE: To examine differences in resident operative experience between male and female general surgery residents.
BACKGROUND: Despite increasing female representation in surgery, sex and gender disparities in residency experience continue to exist. The operative volume of male and female general surgery residents has not been compared on a multi-institutional level.
METHODS: Demographic characteristics and case logs were obtained for categorical general surgery graduates between 2010 and 2020 from the US Resident OPerative Experience Consortium database. Univariable, multivariable, and linear regression analyses were performed to compare differences in operative experience between male and female residents.
RESULTS: There were 1343 graduates from 20 Accreditation Council for Graduate Medical Education-accredited programs, and 476 (35%) were females. There were no differences in age, race/ethnicity, or proportion pursuing fellowship between groups. Female graduates were less likely to be high-volume residents (27% vs 36%, P \u3c 0.01). On univariable analysis, female graduates performed fewer total cases than male graduates (1140 vs 1177, P \u3c 0.01), largely due to a diminished surgeon junior experience (829 vs 863, P \u3c 0.01). On adjusted multivariable analysis, female sex was negatively associated with being a high-volume resident (OR = 0.74, 95% CI: 0.56 to 0.98, P = 0.03). Over the 11-year study period, the annual total number of cases increased significantly for both groups, but female graduates (+16 cases/year) outpaced male graduates (+13 cases/year, P = 0.02).
CONCLUSIONS: Female general surgery graduates performed significantly fewer cases than male graduates. Reassuringly, this gap in operative experience may be narrowing. Further interventions are warranted to promote equitable training opportunities that support and engage female residents
Enhanced Angiotensin II-induced Cardiac and Aortic Remodeling in ACE2 Knockout Mice
Angiotensin-converting enzyme 2 (ACE2) is present in the heart and thought to exert protective functions. We conducted studies in ACE2 deficient mice to determine whether enzyme loss would exacerbate the cardiac and vascular pathological responses to chronic subcutaneous (sc) angiotensin II (Ang II) infusion. Eight-week-old male ACE2 knockout (KO) and wild type (WT) mice were infused with Ang II (1000 ng/kg per min, 4 weeks) using mini-osmotic pumps. Blood pressure (radiotelemetry), cardiac function (echocardiography, echo), cardiac/aortic structure (histology, collagen, and oxidative stress), and vascular inflammation were examined. Before Ang II infusion, ACE2 KO mice showed unaltered cardiac function and blood pressure. After 4 weeks of Ang II infusion, the mean arterial pressure (MAP) increased from 96 ± 2 to 136 ± 17 mm Hg (∼40%) in WT and from 104 ± 5 to 141 ± 13 mm Hg (∼ 35%) in ACE2 KO. While there were no differences in MAP between groups, the ACE2 KO responded differently to the hypertensive stimulus. Echo analysis revealed severe myocardial dysfunction in Ang II-infused ACE2 KO (Ang ACE2 KO). Ejection fraction was lower (39% versus 50%) as was fractional shortening (27% versus 38%) in ACE2 KO versus WT, respectively. Cardiac dysfunction was associated with hypertrophic cardiomyopathy shown by increased left-ventricular wall thickness, average cardiomyocyte cross-sectional area, and heart weight/body weight ratio. Collagen staining in the myocardium and aorta revealed increased collagen in Ang ACE2 KO, suggestive of remodeling. Results also showed enhanced oxidative stress in the myocardium and aorta of Ang ACE2 KO. There was a 3-fold elevation in macrophage inflammatory protein 1α (MIP 1α) in the aorta of ACE2 KO. Studies in the ACE2 KO model reveal the importance of ACE2 in the maladaptive cardiac and aortic responses to Ang II stimulation, seen as enhanced remodeling using physiological, structural, and biochemical markers. Results document a cardio- and vascular-protective role of ACE2 under pathological conditions
Enhanced Angiotensin II-induced Cardiac and Aortic Remodeling in ACE2 Knockout Mice
Angiotensin-converting enzyme 2 (ACE2) is present in the heart and thought to exert protective functions. We conducted studies in ACE2 deficient mice to determine whether enzyme loss would exacerbate the cardiac and vascular pathological responses to chronic subcutaneous (sc) angiotensin II (Ang II) infusion. Eight-week-old male ACE2 knockout (KO) and wild type (WT) mice were infused with Ang II (1000 ng/kg per min, 4 weeks) using mini-osmotic pumps. Blood pressure (radiotelemetry), cardiac function (echocardiography, echo), cardiac/aortic structure (histology, collagen, and oxidative stress), and vascular inflammation were examined. Before Ang II infusion, ACE2 KO mice showed unaltered cardiac function and blood pressure. After 4 weeks of Ang II infusion, the mean arterial pressure (MAP) increased from 96 ± 2 to 136 ± 17 mm Hg (∼40%) in WT and from 104 ± 5 to 141 ± 13 mm Hg (∼ 35%) in ACE2 KO. While there were no differences in MAP between groups, the ACE2 KO responded differently to the hypertensive stimulus. Echo analysis revealed severe myocardial dysfunction in Ang II-infused ACE2 KO (Ang ACE2 KO). Ejection fraction was lower (39% versus 50%) as was fractional shortening (27% versus 38%) in ACE2 KO versus WT, respectively. Cardiac dysfunction was associated with hypertrophic cardiomyopathy shown by increased left-ventricular wall thickness, average cardiomyocyte cross-sectional area, and heart weight/body weight ratio. Collagen staining in the myocardium and aorta revealed increased collagen in Ang ACE2 KO, suggestive of remodeling. Results also showed enhanced oxidative stress in the myocardium and aorta of Ang ACE2 KO. There was a 3-fold elevation in macrophage inflammatory protein 1α (MIP 1α) in the aorta of ACE2 KO. Studies in the ACE2 KO model reveal the importance of ACE2 in the maladaptive cardiac and aortic responses to Ang II stimulation, seen as enhanced remodeling using physiological, structural, and biochemical markers. Results document a cardio- and vascular-protective role of ACE2 under pathological conditions