65 research outputs found

    Studying the impact of ocean eddies on the ecosystem of the Prince Edward Islands: DEIMEC ll

    Get PDF
    The Dynamics of Eddy Impacts on Marion’s Ecosystem Study (DEIMEC) programme was begun in 2002 with the aim of understanding the importance of the oceanic, upstream environment to the ecosystem of the Prince Edward Islands. This island group consists of two small volcanic islands and provides many opportunities for studying ecological and evolutionary processes, for monitoring ecological changes in relation to global climate change and for conserving a unique component of the planet’s biological diversity

    Sentinels to climate change. The need for monitoring at South Africa’s Subantarctic laboratory

    Get PDF
    The International Society for Burns Injuries (ISBI) has published guidelines for the management of multiple or mass burns casualties, and recommends that 'each country has or should have a disaster planning system that addresses its own particular needs.' The need for a national burns disaster plan integrated with national and provincial disaster planning was discussed at the South African Burns Society Congress in 2009, but there was no real involvement in the disaster planning prior to the 2010 World Cup; the country would have been poorly prepared had there been a burns disaster during the event. This article identifies some of the lessons learnt and strategies derived from major burns disasters and burns disaster planning from other regions. Members of the South African Burns Society are undertaking an audit of burns care in South Africa to investigate the feasibility of a national burns disaster plan. This audit (which is still under way) also aims to identify weaknesses of burns care in South Africa and implement improvements where necessary

    Oceanographic observations of eddies impacting the Prince Edward Islands, South Africa

    Get PDF
    The ecosystem of the isolated Prince Edward Islands, south of the African continent, is strongly impacted by ocean eddies that are associated with the eastward flowing Antarctic Circumpolar Current. Satellite altimetry has revealed that the archipelago lies in a region of enhanced eddy kinetic energy. In the late 1990s it became apparent that in order to understand the influence of these eddies on the islands' ecosystem, the source, trajectory and nature of these eddies needed to be studied and understood. To this end a special research project with a strong ocean-going component was designed, the DEIMEC (Dynamics of Eddy Impact on Marion's ECosystem) programme. In this review we focus on the physical oceanography and summarize the aims, the results and the successes of this South African research initiative. In the vicinity of the Prince Edward Islands, an average of three intense well-defined eddies is observed per year. Their advection speeds are of the order of a few kilometres per day and longevities of 7-11 months. These features, of c. 100 km in diameter and reaching depths of at least 1000 m, transport anomalous water masses across the Polar Frontal Zone

    Prince Edward Islands' offshore oceanographic study: report of research cruise April-May 1997

    Get PDF
    preprintFocuses on the preliminary results of the second cruise of the Marion Island Oceanographic Study designed to provide oceanological observations off Prince Edward Islands from April 25 to May 28, 1997. Physical and chemical oceanographic results; Surface seawater temperature; Total chlorophyll-a distribution

    Southern Ocean Seasonal Restratification Delayed by Submesoscale Wind–Front Interactions

    Get PDF
    Ocean stratification and the vertical extent of the mixed layer influence the rate at which the ocean and atmosphere exchange properties. This process has direct impacts for anthropogenic heat and carbon uptake in the Southern Ocean. Submesoscale instabilities that evolve over space (1–10 km) and time (from hours to days) scales directly influence mixed layer variability and are ubiquitous in the Southern Ocean. Mixed layer eddies contribute to mixed layer restratification, while down-front winds, enhanced by strong synoptic storms, can erode stratification by a cross-frontal Ekman buoyancy flux. This study investigates the role of these submesoscale processes on the subseasonal and interannual variability of the mixed layer stratification using four years of high-resolution glider data in the Southern Ocean. An increase of stratification from winter to summer occurs due to a seasonal warming of the mixed layer. However, we observe transient decreases in stratification lasting from days to weeks, which can arrest the seasonal restratification by up to two months after surface heat flux becomes positive. This leads to interannual differences in the timing of seasonal restratification by up to 36 days. Parameterizing the Ekman buoyancy flux in a one-dimensional mixed layer model reduces the magnitude of stratification compared to when the model is run using heat and freshwater fluxes alone. Importantly, the reduced stratification occurs during the spring restratification period, thereby holding important implications for mixed layer dynamics in climate models as well as physical–biological coupling in the Southern Ocean

    Physical and biological coupling in eddies in the lee of the South-West Indian Ridge

    Get PDF
    Eddies have some decisive functions in the dynamics of the Southern Ocean ecosystems. This is particularly true in the Indian sector of the Southern Ocean, where a region of unusually high-mesoscale variability has been observed in the vicinity of the South-West Indian Ridge. In April 2003, three eddies were studied: eddy A, a recently spawned anticyclone south of the Antarctic Polar Front (APF),; eddy B, an anticyclone north of lying between the Subantarctic Front and the APF; and eddy C, a cyclone north of the APF west of the ridge. Elevated concentrations of total Chl-a coincided with the edges of the cyclonic eddy, whereas both anticyclonic eddies A and B were characterised by low total Chl-a concentrations. Biologically, the two anticyclonic eddies A and B were distinctly different in their biogeographic origin. The zooplankton community in the larger anticyclonic eddy A was similar in composition to the Antarctic Polar Frontal Zone (APFZ) community with an addition of some Antarctic species suggesting an origin just north of the APF. In contrast, the species composition within the second anticyclonic eddy B appeared to be more typical of the transitional nature of the APFZ, comprising species of both subantarctic and subtropical origin and thus influenced by intrusions of water masses from both north and south of the Subantarctic Front. Back-tracking of these features shows that the biological composition clearly demarcates the hydrographic origin of these features

    Monitoring the oceanic flow between Africa and Antarctica: report of the first Good Hope cruise

    Get PDF
    The Southern Ocean plays a major role in the global oceanic circulation, as a component of the Meridional Overturning Circulation, and it is postulated that it has a great influence on present-day climate. However, our understanding of its complex three-dimensional dynamics and of the impact of its variability on the climate system is rudimentary. The newly constituted, international GoodHope research venture aims to address this knowledge gap by establishing a programme of regular observations across the Southern Ocean between the African and Antarctic continents. The objectives of this programme are fivefold: (1) to improve understanding of Indo-Atlantic inter-ocean exchanges and their impact on the global thermohaline circulation and thus on global climate change; (2) to understand in more detail the influence these exchanges have on the climate variability of the southern African subcontinent; (3) to monitor the variability of the main Southern Ocean frontal systems associated with the Antarctic Circumpolar Current; (4) to study air-sea exchanges and their role on the global heat budget, with particular emphasis on the intense exchanges occurring within the Agulhas Retroflection region south of South Africa, and (5) to examine the role of major frontal systems as areas of elevated biological activity and as biogeographical barriers to the distribution of plankton. We present here preliminary results on the physical and biological structure of the frontal systems using the first GoodHope transect that was completed during February-March 2004

    Physical and biological processes at the Subtropical Convergence in the South-west Indian Ocean

    Get PDF
    A detailed hydrographic and biological survey was conducted in the region of the Subtropical Convergence in the Indian sector of the Southern Ocean in April 2007. Hydrographic data revealed that the subsurface expression of the Subtropical Convergence (at 200 m), marked by the 10°C isotherm, appeared to meander considerably between 41°S and 42°15’S. Total surface chlorophyll- a concentration was low and ranged from 0.03 to 0.42 µg l–1 and was always dominated by the pico- ( 0.05). The zooplankton community was dominated, numerically and by biomass, by mesozooplankton comprising mainly copepods of the genera, Oithona,Paraeuchaeta, Pleuromamma, Calanus and Clausocalanus. An exception was recorded at those stations in the region of the front where the tunicate, Salpa thompsoni, dominated the total zooplankton biomass

    Physical and biological variability in the Antarctic Polar Frontal Zone: report on research cruise 103 of the MV SA Agulhas

    Get PDF
    A detailed hydrographic and biological survey was carried out in the region of the South-west Indian Ridge during April 2002. Hydrographic data revealed that the Andrew Bain Fracture Zone, centred at 30oE, 50oS, functions as an important choke point to the flow of the Antarctic Circumpolar Current, resulting in the convergence of the Antarctic Polar Front (APF) and the southern branch of the Sub-Antarctic Front (SSAF). Total chlorophyll-a concentration and zooplankton biomass were highest at stations occupied in the vicinity of two frontal features represented by the APF and SSAF. These data suggest that the region of the South-west Indian Ridge is an area of elevated biological activity and probably acts as an important offshore feeding area for the top predators on the Prince Edward Islands

    Studying the impact of ocean eddies on the ecosystem of the Prince Edward Islands: DEIMEC ll

    Get PDF
    The Dynamics of Eddy Impacts on Marion’s Ecosystem Study (DEIMEC) programme was begun in 2002 with the aim of understanding the importance of the oceanic, upstream environment to the ecosystem of the Prince Edward Islands. This island group consists of two small volcanic islands and provides many opportunities for studying ecological and evolutionary processes, for monitoring ecological changes in relation to global climate change and for conserving a unique component of the planet’s biological diversity
    corecore