34 research outputs found

    Procedural control and the proper balance between public and private interests in defamation claims

    Get PDF
    Claims in defamation involve courts in balancing of a number of interests. The Claimant’s interest in their reputation must be balanced with the Defendant’s interest in free expression. The Court’s interest in fair, efficient and proportionate adjudication must be balanced against the Claimant’s interest in vindicating their reputation. Much of the literature examining this balance has focused on the substantive law. This article seeks to consider how these interests have been balanced through procedural control mechanisms, such as summary judgment and strike out. In particular, the development of the court’s ability to strike out a claim as an abuse of process is been considered. It is argued that the ability to strike out in such cases performs an important role, but should not be used to prevent reputational vindication where this is worthwhile. Further, it is argued that whilst substantive and procedural changes may reduce the need for strike out, the courts should not remove this important tool from their toolbox

    Schizophrenia risk conferred by rare protein-truncating variants is conserved across diverse human populations

    Get PDF
    Schizophrenia (SCZ) is a chronic mental illness and among the most debilitating conditions encountered in medical practice. A recent landmark SCZ study of the protein-coding regions of the genome identified a causal role for ten genes and a concentration of rare variant signals in evolutionarily constrained genes1. This recent study—and most other large-scale human genetics studies—was mainly composed of individuals of European (EUR) ancestry, and the generalizability of the findings in non-EUR populations remains unclear. To address this gap, we designed a custom sequencing panel of 161 genes selected based on the current knowledge of SCZ genetics and sequenced a new cohort of 11,580 SCZ cases and 10,555 controls of diverse ancestries. Replicating earlier work, we found that cases carried a significantly higher burden of rare protein-truncating variants (PTVs) among evolutionarily constrained genes (odds ratio = 1.48; P = 5.4 × 10−6). In meta-analyses with existing datasets totaling up to 35,828 cases and 107,877 controls, this excess burden was largely consistent across five ancestral populations. Two genes (SRRM2 and AKAP11) were newly implicated as SCZ risk genes, and one gene (PCLO) was identified as shared by individuals with SCZ and those with autism. Overall, our results lend robust support to the rare allelic spectrum of the genetic architecture of SCZ being conserved across diverse human populations

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Bridging pre-surgical endocrine therapy for breast cancer during the COVID-19 pandemic: outcomes from the B-MaP-C study

    Get PDF
    Purpose: The B-MaP-C study investigated changes to breast cancer care that were necessitated by the COVID-19 pandemic. Here we present a follow-up analysis of those patients commenced on bridging endocrine therapy (BrET), whilst they were awaiting surgery due to reprioritisation of resources. Methods: This multicentre, multinational cohort study recruited 6045 patients from the UK, Spain and Portugal during the peak pandemic period (Feb–July 2020). Patients on BrET were followed up to investigate the duration of, and response to, BrET. This included changes in tumour size to reflect downstaging potential, and changes in cellular proliferation (Ki67), as a marker of prognosis. Results: 1094 patients were prescribed BrET, over a median period of 53 days (IQR 32–81 days). The majority of patients (95.6%) had strong ER expression (Allred score 7–8/8). Very few patients required expedited surgery, due to lack of response (1.2%) or due to lack of tolerance/compliance (0.8%). There were small reductions in median tumour size after 3 months’ treatment duration; median of 4 mm [IQR − 20, 4]. In a small subset of patients ( n = 47), a drop in cellular proliferation (Ki67) occurred in 26 patients (55%), from high (Ki67 ≥ 10%) to low (< 10%), with at least one month’s duration of BrET. Discussion: This study describes real-world usage of pre-operative endocrine therapy as necessitated by the pandemic. BrET was found to be tolerable and safe. The data support short-term (≤ 3 months) usage of pre-operative endocrine therapy. Longer-term use should be investigated in future trials

    Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications

    No full text
    Poly(3-hydroxybutyrate) (P(3HB)) foams exhibiting highly interconnected porosity (85% porosity) were prepared using a unique combination of solvent casting and particulate leaching techniques by employing commercially available sugar cubes as porogen. Bioactive glass (BG) particles of 45S5 Bioglass((R)) grade were introduced in the scaffold microstructure, both in micrometer ((m-BG), <5 mum) and nanometer ((n-BG), 30 nm) sizes. The in vitro bioactivity of the P(3HB)/BG foams was confirmed within 10 days of immersion in simulated body fluid and the foams showed high level of protein adsorption. The foams interconnected porous microstructure proved to be suitable for MG-63 osteoblast cell attachment and proliferation. The foams implanted in rats as subcutaneous implants resulted in a non-toxic and foreign body response after one week of implantation. In addition to showing bioactivity and biocompatibility, the P(3HB)/BG composite foams also exhibited bactericidal properties, which was tested on the growth of Staphylococcus aureus. An attempt was made at developing multifunctional scaffolds by incorporating, in addition to BG, selected concentrations of Vitamin E or/and carbon nanotubes. P(3HB) scaffolds with multifunctionalities (viz. bactericidal, bioactive, electrically conductive, antioxidative behaviour) were thus produced, which paves the way for next generation of advanced scaffolds for bone tissue engineering. Copyright © 2009 Elsevier Ltd. All rights reserved

    Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites

    No full text
    This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation
    corecore