23 research outputs found

    Probabilistic risk assessment of the environmental impacts of pesticides in the Crocodile (west) Marico catchment, North-West Province

    Get PDF
    External agricultural inputs, such as pesticides, may pose risks to aquatic ecosystems and affect aquatic populations, communities and ecosystems. To predict these risks, a tiered approach was followed, incorporating both the PRIMET and PERPEST models. The first-tier PRIMET model is designed to yield a relatively worst-case risk assessment requiring a minimum of input data, after which the effects of the risks can be refined using a higher tier PERPEST model. The risk assessment initially depends on data supplied from local landowners, pesticide characteristic, application scheme and physical scenario of the environment under question. Preliminary results are presented, together with ecotoxicological data on several frequently-used pesticides in a section of the Crocodile (west) Marico Water Management Area (WMA) in South Africa. This area is historically known to have a high pesticide usage, with deltamethrin, aldicarb, parathion, cypermethrin and dichlorvos being the main pesticides used. Deltamethrin was indicated as having the highest probability of risks to aquatic organisms occurring in the study area. Cypermethrin, parathion, dichlorvos, carbaryl, romoxynil, linuron, methomyl and aldicarb were all indicated as having possible risks (ETR 1-100) to the aquatic environment. Pesticides posing no risk included fenamiphos, abamectin, pendimethalin, captan, endosulfan, alachlor, bentazone and cyromazine (ET

    Pesticides in South African fresh waters

    No full text
    Public concern has recently escalated over pesticide contamination of South African aquatic ecosystems. This review of published literature on the occurrence of pesticides within South African freshwater systems indicates that fewer than 50 studies of selected pesticides have been undertaken, with emphasis being on organochlorines. Extensive historical usage has led to the widespread persistence of selected organochlorines. Few studies have established linkages between pesticides, exposure pathways, environmental concentrations and the monitoring of toxicological effects on non-target organisms. Emphasis is now being placed on developing more field-relevant assessments, including microcosm and mesocosm studies, in situ bioassays and field studies. There are few data relating to the extent of exposure and effects of pesticides in South African aquatic environments, and thus further research is needed. Research should focus on multidisciplinary approaches that increase effective decisionmaking in data-poor circumstances. A pesticide risk assessment programme for aquatic ecosystems needs to be implemented in South Africa, which could feed into the National Toxicity Monitoring Programme. Preliminary risk assessment models should be used to detect pesticides posing possible or definite risks, whereafter more detailed chemical, toxicological and biological monitoring assessments should be performed if risks are predicted

    Application of a direct toxicity assessment approach to assess the hazard of potential pesticide exposure at selected sites on the Crocodile and Magalies rivers, South Africa.

    No full text
    The potentially hazardous effects of agricultural pesticide usage in the Crocodile (west) Marico catchment were evaluated using the Danio rerio and Daphnia pulex lethality, Selenastrum capricornutum growth inhibition and the Ames mutagenicity plate incorporation assays. Hazard assessment categories are proposed to standardise the output of the different toxicity assessments. Sites were categorised according to the toxicity hazard indicated and were related to the gradients of agricultural land-use intensity at each site. Intensive agricultural sites showed the highest effects to all tested biota. Receiving water at urban sites associated with increased nutrients and lowest pesticide usage showed few adverse effects, while the relatively unimpacted site indicated no hazard to any organism, and only a slight stimulation to algal growth. Weighted hazard scores indicated that the unimpacted sites were least hazardous, falling within a B category, the urban sites were moderately hazardous (C category), and the agricultural sites (D category) had the highest potential impacts on aquatic organisms. This study demonstrated the usefulness of using the hazard assessment approach and the role it could play in assessing site-specific potential toxicity hazards of river water impacted by agrochemicals. It can be used together with other assessment methods, such as biological indices, in a tiered approach

    Probabilistic risk assessment of the environmental impacts of pesticides in the Crocodile (west) Marico catchment, North-West Province

    No full text
    External agricultural inputs, such as pesticides, may pose risks to aquatic ecosystems and affect aquatic populations, communities and ecosystems. To predict these risks, a tiered approach was followed, incorporating both the PRIMET and PERPEST models. The first-tier PRIMET model is designed to yield a relatively worst-case risk assessment requiring a minimum of input data, after which the effects of the risks can be refined using a higher tier PERPEST model. The risk assessment initially depends on data supplied from local landowners, pesticide characteristic, application scheme and physical scenario of the environment under question. Preliminary results are presented, together with ecotoxicological data on several frequently-used pesticides in a section of the Crocodile (west) Marico Water Management Area (WMA) in South Africa. This area is historically known to have a high pesticide usage, with deltamethrin, aldicarb, parathion, cypermethrin and dichlorvos being the main pesticides used. Deltamethrin was indicated as having the highest probability of risks to aquatic organisms occurring in the study area. Cypermethrin, parathion, dichlorvos, carbaryl, romoxynil, linuron, methomyl and aldicarb were all indicated as having possible risks (ETR 1-100) to the aquatic environment. Pesticides posing no risk included fenamiphos, abamectin, pendimethalin, captan, endosulfan, alachlor, bentazone and cyromazine (ET

    Pesticides in South African fresh waters

    No full text
    Public concern has recently escalated over pesticide contamination of South African aquatic ecosystems. This review of published literature on the occurrence of pesticides within South African freshwater systems indicates that fewer than 50 studies of selected pesticides have been undertaken, with emphasis being on organochlorines. Extensive historical usage has led to the widespread persistence of selected organochlorines. Few studies have established linkages between pesticides, exposure pathways, environmental concentrations and the monitoring of toxicological effects on non-target organisms. Emphasis is now being placed on developing more field-relevant assessments, including microcosm and mesocosm studies, in situ bioassays and field studies. There are few data relating to the extent of exposure and effects of pesticides in South African aquatic environments, and thus further research is needed. Research should focus on multidisciplinary approaches that increase effective decisionmaking in data-poor circumstances. A pesticide risk assessment programme for aquatic ecosystems needs to be implemented in South Africa, which could feed into the National Toxicity Monitoring Programme. Preliminary risk assessment models should be used to detect pesticides posing possible or definite risks, whereafter more detailed chemical, toxicological and biological monitoring assessments should be performed if risks are predicted

    Application of a direct toxicity assessment approach to assess the hazard of potential pesticide exposure at selected sites on the Crocodile and Magalies rivers, South Africa.

    No full text
    The potentially hazardous effects of agricultural pesticide usage in the Crocodile (west) Marico catchment were evaluated using the Danio rerio and Daphnia pulex lethality, Selenastrum capricornutum growth inhibition and the Ames mutagenicity plate incorporation assays. Hazard assessment categories are proposed to standardise the output of the different toxicity assessments. Sites were categorised according to the toxicity hazard indicated and were related to the gradients of agricultural land-use intensity at each site. Intensive agricultural sites showed the highest effects to all tested biota. Receiving water at urban sites associated with increased nutrients and lowest pesticide usage showed few adverse effects, while the relatively unimpacted site indicated no hazard to any organism, and only a slight stimulation to algal growth. Weighted hazard scores indicated that the unimpacted sites were least hazardous, falling within a B category, the urban sites were moderately hazardous (C category), and the agricultural sites (D category) had the highest potential impacts on aquatic organisms. This study demonstrated the usefulness of using the hazard assessment approach and the role it could play in assessing site-specific potential toxicity hazards of river water impacted by agrochemicals. It can be used together with other assessment methods, such as biological indices, in a tiered approach

    Irrigation water quality and the threat it poses to crop production: evaluating the status of the Crocodile (West) and Marico catchments, South Africa

    No full text
    Ensuring food security is becoming increasingly difficult due to limited freshwater resources. Low-quality irrigation water also poses a severe threat to crop yield and quality. The aim of this study was to evaluate the water quality associated with the Crocodile (West) and Marico catchments, which represent one of South Africa’s most developed regions. Sources of irrigation water include the hypertrophic Hartbeespoort Dam, as well as the heavily impacted Crocodile (West) River. Analysis of historical irrigation water quality data (from January 2005 to December 2015) revealed that the Hartbeespoort and Crocodile (West) irrigation schemes were exposed to calcium sulfate enrichment, likely as a result of extensive mining activities in the Bushveld Igneous Complex. Also, significant differences in water quality parameters occurred between these irrigation schemes and the reference system (Marico-Bosveld Irrigation Scheme), while important salt (chloride and sodium) and nutrient (inorganic nitrogen and orthophosphate (as phosphorus)) concentrations exceeded threshold values provided by irrigation water quality guidelines. The Hartbeespoort and Crocodile (West) irrigation schemes also presented distinctive temporal (long-term and seasonal) patterns in water quality. Seasonal variation in pH levels at the Hartbeespoort Irrigation Scheme is likely caused by excessive algae growth and cyanobacteria blooms (Mycrocystis sp.), which also pose an important threat to human and animal health. Despite mitigation efforts by government and other stakeholders, some of South Africa’s major irrigation schemes remain highly impacted as a result of water quality deterioratio
    corecore