110 research outputs found

    Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr_2GdCu_2O_8 studied by muon spin rotation (\mu SR) and DC-magnetization

    Full text link
    We have investigated the magnetic and the superconducting properties of the hybrid ruthenate-cuprate compound RuSr_{2}GdCu_{2}O_{8} by means of zero-field muon spin rotation- (ZF-μ\mu SR) and DC magnetization measurements. The DC-magnetisation data establish that this material exhibits ferromagnetic order of the Ru-moments (μ(Ru)≈1μB\mu (Ru) \approx 1 \mu_{B}) below T_{Curie} = 133 K and becomes superconducting at a much lower temperature T_c = 16 K. The ZF-μ\mu SR experiments indicate that the ferromagnetic phase is homogeneous on a microscopic scale and accounts for most of the sample volume. They also suggest that the magnetic order is not significantly modified at the onset of superconductivity.Comment: improved version submitted to Phys. Rev.

    Two dimensionality in quasi one-dimensional cobalt oxides

    Full text link
    By means of muon spin rotation and relaxation (μ+\mu^+SR) techniques, we have investigated the magnetism of quasi one-dimensional (1D) cobalt oxides AEn+2AE_{n+2}Con+1_{n+1}O3n+3_{3n+3} (AEAE=Ca, Sr and Ba, nn=1, 2, 3, 5 and ∞\infty), in which the 1D CoO3_3 chain is surrounded by six equally spaced chains forming a triangular lattice in the abab-plane, using polycrystalline samples, from room temperature down to 1.8 K. For the compounds with nn=1 - 5, transverse field μ+\mu^+SR experiments showed the existence of a magnetic transition below ∼\sim100 K. The onset temperature of the transition (TconT_{\rm c}^{\rm on}) was found to decrease with nn; from 100 K for nn=1 to 60 K for nn=5. A damped muon spin oscillation was observed only in the sample with nn=1 (Ca3_3Co2_2O6_6), whereas only a fast relaxation obtained even at 1.8 K in the other three samples. In combination with the results of susceptibility measurements, this indicates that a two-dimensional short-range antiferromagnetic (AF) order appears below TconT_{\rm c}^{\rm on} for all compounds with nn=1 - 5; but quasi-static long-range AF order formed only in Ca3_3Co2_2O6_6, below 25 K. For BaCoO3_3 (nn=∞\infty), as TT decreased from 300 K, 1D ferromagnetic (F) order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.Comment: 12 pages, 14 figures, and 2 table

    Evidence for endohedral muonium in Kx C60 and consequences for electronic structure

    Get PDF
    Positive muons injected into solid C60, K4C60, and K6C60 form vacuumlike muonium (μ+e-) with a (6–12)% probability. Observation of coherent spin precession of muonium establishes that all three materials are nonmagnetic and nonconducting at low temperatures. From the temperature dependence of the signals we estimate the electronic band gaps in K4C60 and K6C60 to be considerably smaller than in C60. The similarity of the muonium centers supports a model in which a muonium atom is caged inside the C60 molecule in pure C60 or the C60x molecular ion in KxC60

    A common behavior of thermoelectric layered cobaltites: incommensurate spin density wave states in [Ca2_2Co4/3_{4/3}Cu2/3_{2/3}O4_4]0.62_{0.62}[CoO2_2] and [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2]

    Full text link
    Magnetism of a misfit layered cobaltite [Ca2_2Co4/3_{4/3}Cu2/3_{2/3}O4_4]xRS_x^{\rm RS}[CoO2_2] (x∼x \sim 0.62, RS denotes a rocksalt-type block) was investigated by a positive muon spin rotation and relaxation (μ+\mu^+SR) experiment. A transition to an incommensurate ({\sf IC}) spin density wave ({\sf SDW}) state was found below 180 K (= TConT_{\rm C}^{\rm on}); and a clear oscillation due to a static internal magnetic field was observed below 140 K (= TCT_{\rm C}). Furthermore, an anisotropic behavior of the zero-field μ+\mu^+SR experiment indicated that the {\sf IC-SDW} propagates in the aa-bb plane, with oscillating moments directed along the c axis. These results were quite similar to those for the related compound [Ca2_2CoO3_3]0.62RS_{0.62}^{\rm RS}[CoO2_2], {\sl i.e.}, Ca3_3Co4_4O9_9. Since the {\sf IC-SDW} field in [Ca2_2Co4/3_{4/3}Cu2/3_{2/3}O4_4]0.62RS_{0.62}^{\rm RS}[CoO2_2] was approximately same to those in pure and doped [Ca2_2CoO3_3]0.62RS_{0.62}^{\rm RS}[CoO2_2], it was concluded that the {\sf IC-SDW} exist in the [CoO2_2] planes.Comment: 15 pages, 6 figures. accepted for publication in J. Phys.: Condens. Matte

    Freezing of spin and charge in La_(2-x)Sr_xCuO_4

    Get PDF
    Zero- and longitudinal-field muon-spin relaxation μ+SR measurements have been performed on La_(2-x)Sr_xCuO_4 alloys in both single-crystal and sintered powder forms above and below their magnetic transition temperatures, T_f. The μ+ precession frequency v depends only weakly on x and T_f, an observation which together with resistivity data implies classical freezing of magnetic moments in the regime where the carriers are localized. For x=0.05, critical dynamics are observed near T_f. The μ^+SR technique is shown to be very sensitive to ferromagnetically aligned pairs of Cu^(2+) moments; the population of such pairs increases greatly with x

    Hidden magnetic transitions in thermoelectric layered cobaltite, [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2]

    Full text link
    A positive muon spin rotation and relaxation (μ+\mu^+SR) experiment on [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2], ({\sl i.e.}, Ca3_3Co4_4O9_9, a layered thermoelectric cobaltite) indicates the existence of two magnetic transitions at ∼\sim 100 K and 400 - 600 K; the former is a transition from a paramagnetic state to an incommensurate ({\sf IC}) spin density wave ({\sf SDW}) state. The anisotropic behavior of zero-field μ+\mu^+SR spectra at 5 K suggests that the {\sf IC-SDW} propagates in the aa-bb plane, with oscillating moments directed along the c-axis; also the {\sf IC-SDW} is found to exist not in the [Ca2_2CoO3_3] subsystem but in the [CoO2_2] subsystem. In addition, it is found that the long-range {\sf IC-SDW} order completes below ∼\sim 30 K, whereas the short-range order appears below 100 K. The latter transition is interpreted as a gradual change in the spin state of Co ions %% at temperatures above 400 K. These two magnetic transitions detected by μ+\mu^+SR are found to correlate closely with the transport properties of [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2].Comment: 7 pages, 8 figures. to be appeared in Phys. Rev.
    • …
    corecore