6 research outputs found

    Pathogenesis-Related Proteins and Their Transgenic Expression for Developing Disease-Resistant Crops: Strategies Progress and Challenges

    Get PDF
    Various pathogenic microorganisms (such as fungi, bacteria, viruses and nematodes) affect plant viability and productivity. However, plants combat these pathogens by inducing their defense mechanism to sustain their fitness. The aggregation of pathogenesis-related (PR) proteins in response to invading pathogens is a crucial component of a plant’s self-defense mechanism. PR proteins induce innate resistance in plants through fungal cell wall disintegration, membrane permeabilization, transcriptional suppression, and ribosome inactivation. Earlier studies have demonstrated their crucial role in determining resistance against phytopathogens, making them a promising candidate for developing disease-resistant crop varieties. Plant genetic engineering is a potential approach for developing disease-resistant transgenic crops by employing several PR genes (thaumatin, osmotin-like proteins, chitinases, glucanases, defensins, thionins, oxalate oxidase, oxalate oxidases like proteins/germin-like proteins and LTPs). Furthermore, the overexpression of PR proteins enhances the resistance against phytopathogens. As a result, this chapter gives an overview of PR proteins, including their classification, functional characterization, signaling pathways, mode of action and role in defense against various phytopathogens. It also highlights genetic engineering advances in utilizing these genes singly or synergistically against various phytopathogens to impart disease resistance. Various challenges faced with the products of transgenic technology and synergistic expression of different groups of PR proteins were also discussed

    Mechanisms of Antidiabetic Activity of Methanolic Extract of Punica granatum Leaves in Nicotinamide/Streptozotocin-Induced Type 2 Diabetes in Rats

    No full text
    The current study aimed to establish the mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves (MEPGL) in nicotinamide/streptozotocin-induced type 2 diabetes in rats. Phytochemical screening, HPLC analysis, and acute toxicity study of MEPGL were carried out. Various concentrations of MEPGL (100, 200, 400, and 600 mg/kg) were administered orally to diabetic rats for 45 days on a daily basis. The antidiabetic effect of MEPGL was examined by measuring blood glucose, plasma insulin, and glycated hemoglobin (HbA1c) levels, as well as with an oral glucose tolerance test. The antioxidant effect of MEPGL was determined by analyzing hepatic and renal antioxidant markers, namely superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and lipid peroxidation. The other biochemical markers alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), urea, and creatinine, as well as total cholesterol, triglycerides, and high-density lipoprotein (HDL) were also studied. Type 2 diabetes significantly altered these parameters, while oral administration of the MEPGL significantly ameliorated them. Moreover, the pancreatic histopathological changes were attenuated with MEPGL treatment. In a nutshell, oral MEPGL administration in diabetic rats showed antidiabetic activity due to its antioxidant activity, most probably due to the gallic acid, ellagic acid, and apigenin found in MEPGL
    corecore