27 research outputs found

    Aberrant Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Wilson’s Disease

    Get PDF
    Both abnormalities of resting-state cerebral blood flow (CBF) and functional connectivity in Wilson’s disease (WD) have been identified by several studies. Whether the coupling of CBF and functional connectivity is imbalanced in WD remains largely unknown. To assess this possibility, 27 patients with WD and 27 sex- and age-matched healthy controls were recruited to acquire functional MRI and arterial spin labeling imaging data. Functional connectivity strength (FCS) and CBF were calculated based on standard gray mask. Compared to healthy controls, the CBF–FCS correlations of patients with WD were significantly decreased in the basal ganglia and the cerebellum and slightly increased in the prefrontal cortex and thalamus. In contrast, decreased CBF of patients with WD occurred predominately in subcortical and cognitive- and emotion-related brain regions, including the basal ganglia, thalamus, insular, and inferior prefrontal cortex, whereas increased CBF occurred primarily in the temporal cortex. The FCS decrease in WD patients was predominately in the basal ganglia and thalamus, and the increase was primarily in the prefrontal cortex. These findings suggest that aberrant neurovascular coupling in the brain may be a possible neuropathological mechanism underlying WD

    Cortical Reorganization in Patients Recovered from Bell's Palsy: An Orofacial and Finger Movements Task-State fMRI Study

    Get PDF
    Objective. To explore cortical reorganization of patients recovered from Bell's palsy (BP) by task-state functional magnetic resonance imaging (fMRI) during finger and orofacial movements and provide more evidence for acupuncture clinical treatment of BP. Methods. We collected 17 BP patients with complete clinical recovery (BP group) and 20 healthy volunteers (control group) accepted the task-state fMRI scans with lip pursing movements and finger movements, respectively. Results. It was found that there were significant differences of brain functional status between the two groups. Conclusions. The results showed that there was cortical reorganization in the brain of patients recovered from BP after acupuncture treatment, which also suggested the relationship between the hand motor areas and facial motor areas of BP patients

    Cross-satellite calibration of high-energy electron fluxes measured by FengYun-4A based on Arase observations

    Get PDF
    We use the High-energy Electron Experiments (HEP) instrument onboard Arase (ERG) to conduct an energy-dependent cross-satellite calibration of electron fluxes measured by the High Energy Particle Detector (HEPD) onboard FengYun-4A (FY-4A) spanning from April 1, 2017, to September 30, 2019. By tracing the two-dimensional magnetic positions (L, magnetic local time [MLT]) of FY-4A at each time, we compare the datasets of the conjugate electron fluxes over the range of 245–894 keV in 6 energy channels for the satellite pair within different sets of L × MLT. The variations in the electron fluxes observed by FY-4A generally agree with the Arase measurements, and the percentages of the ratios of electron flux conjunctions within a factor of 2 are larger than 50%. Compared with Arase, FY-4A systematically overestimates electron fluxes at all 6 energy channels, with the corresponding calibration factors ranging from 0.67 to 0.81. After the cross-satellite calibration, the electron flux conjunctions between FY-4A and Arase show better agreement, with much smaller normalized root mean square errors. Our results provide a valuable reference for the application of FY-4A high-energy electron datasets to in-depth investigations of the Earth’s radiation belt electron dynamics

    Super-active regions in solar cycle 24

    No full text

    A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia

    No full text
    Abstract Background Oncogenic roles of epidermal growth factor receptor pathway substrate no.8 (EPS8) have been widely reported in various tumors, making targeting of EPS8 an appealing prospect. Here, we describe the role of EPS8 in acute myeloid leukemia (AML) and consider the potential of EPS8 as an anti-AML target. Nuclear localization signal (NLS) residues of tumor-associated proteins are crucial for cell cycle progression, and specific inhibitors derived from the NLS have inhibitory effect on cancer cells. The NLS in EPS8 has potential as a specific anti-AML target. Methods Gene Expression Omnibus expression profiles of AML patients were used to test associations between EPS8 expression and AML patient outcome. The biological characteristics of AML cells after EPS8 knockdown were analyzed in vitro and in vivo. A specific peptide (CP-EPS8-NLS) derived from the NLS of EPS8 (amino acids 298–310) was synthesized, and the anti-AML effects of CP-EPS8-NLS were analyzed in cancer cells and in xenograft models. Mutated CP-EPS8-NLS and penetratin served as controls. Results We observed that elevated EPS8 expression in AML patients is associated with poor outcome. Knockdown of EPS8 significantly suppressed the survival of AML cells in vitro and in vivo. CP-EPS8-NLS interfered with EPS8-associated signaling and consequently exerted anti-AML activity. Importantly, CP-EPS8-NLS displayed anti-AML activity in various AML cell types, with diminished activity in PBMCs. CP-ESP8-NLS suppressed U937 cell proliferation, and injection of CP-EPS8-NLS exerted potent antitumor activity in the xenograft tumor models. A synergistic effect of CP-EPS8-NLS and chemotherapeutic agents was also observed in vitro and in vivo. Mechanistically, treatment of various AML cells with CP-EPS8-NLS downregulated the expression of EPS8 and its downstream pathways. Conclusions The function of CP-EPS8-NLS is explained by the presence of a NLS in EPS8, which has been shown to induce nuclear translocation, consequently resulting in EPS8 overexpression. These results indicate that EPS8 is a potential target for AML treatment

    Study on Lesion Assessment of Cerebello-Thalamo-Cortical Network in Wilson’s Disease with Diffusion Tensor Imaging

    No full text
    Wilson’s disease (WD) is a genetic disorder of copper metabolism with pathological copper accumulation in the brain and any other tissues. This article aimed to assess lesions in cerebello-thalamo-cortical network with an advanced technique of diffusion tensor imaging (DTI) in WD. 35 WD patients and 30 age- and sex-matched healthy volunteers were recruited to accept diffusion-weighted images with 15 gradient vectors and conventional magnetic resonance imaging (MRI). The DTI parameters, including fractional anisotropy (FA) and mean diffusion (MD), were calculated by diffusion kurtosis estimator software. After registration, patient groups with FA mappings and MD mappings and normal groups were compared with 3dttest and receiver-operating characteristic (ROC) curve analysis, corrected with FDR simulations (p=0.001, α=0.05, cluster size = 326). We found that the degree of FA increased in the bilateral head of the caudate nucleus (HCN), lenticular nucleus (LN), ventral thalamus, substantia nigra (SN), red nucleus (RN), right dentate nucleus (DN), and decreased in the mediodorsal thalamus and extensive white matter. The value of MD increased in HCN, LN, SN, RN, and extensive white matter. The technique of DTI provides higher sensitivity and specificity than conventional MRI to detect Wilson’s disease. Besides, lesions in the basal ganglia, thalamus, and cerebellum might disconnect the basal ganglia-thalamo-cortical circuits or dentato-rubro-thalamic (DRT) track and disrupt cerebello-thalamo-cortical network finally, which may cause clinical extrapyramidal symptoms

    Large-scale networks changes in Wilson’s disease associated with neuropsychiatric impairments: a resting-state functional magnetic resonance imaging study

    No full text
    Abstract Background In Wilson’s disease (WD) patients, network connections across the brain are disrupted, affecting multidomain function. However, the details of this neuropathophysiological mechanism remain unclear due to the rarity of WD. In this study, we aimed to investigate alterations in brain network connectivity at the whole-brain level (both intra- and inter-network) in WD patients through independent component analysis (ICA) and the relationship between alterations in these brain network functional connections (FCs) and clinical neuropsychiatric features to understand the underlying pathophysiological and central compensatory mechanisms. Methods Eighty-five patients with WD and age- and sex-matched 85 healthy control (HC) were recruited for resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We extracted the resting-state networks (RSNs) using the ICA method, analyzed the changes of FC in these networks and the correlation between alterations in FCs and clinical neuropsychiatric features. Results Compared with HC, WD showed widespread lower connectivity within RSNs, involving default mode network (DMN), frontoparietal network (FPN), somatomotor network (SMN), dorsal attention network (DAN), especially in patients with abnormal UWDRS scores. Furthermore, the decreased FCs in the left medial prefrontal cortex (L_ MPFC), left anterior cingulate gyrus (L_ACC), precuneus (PCUN)within DMN were negatively correlated with the Unified Wilson’s Disease Rating Scale-neurological characteristic examination (UWDRS-N), and the decreased FCs in the L_MPFC, PCUN within DMN were negatively correlated with the Unified Wilson’s Disease Rating Scale-psychiatric symptoms examination (UWDRS-P). We additionally discovered that the patients with WD exhibited significantly stronger FC between the FPN and DMN, between the DAN and DMN, and between the FPN and DAN compared to HC. Conclusions We have provided evidence that WD is a disease with widespread dysfunctional connectivity in resting networks in brain, leading to neurological features and psychiatric symptoms (e.g. higher-order cognitive control and motor control impairments). The alter intra- and inter-network in the brain may be the neural underpinnings for the neuropathological symptoms and the process of injury compensation in WD patients

    Cortical Reorganization in Patients Recovered from Bell’s Palsy: An Orofacial and Finger Movements Task-State fMRI Study

    No full text
    Objective. To explore cortical reorganization of patients recovered from Bell’s palsy (BP) by task-state functional magnetic resonance imaging (fMRI) during finger and orofacial movements and provide more evidence for acupuncture clinical treatment of BP. Methods. We collected 17 BP patients with complete clinical recovery (BP group) and 20 healthy volunteers (control group) accepted the task-state fMRI scans with lip pursing movements and finger movements, respectively. Results. It was found that there were significant differences of brain functional status between the two groups. Conclusions. The results showed that there was cortical reorganization in the brain of patients recovered from BP after acupuncture treatment, which also suggested the relationship between the hand motor areas and facial motor areas of BP patients

    Correction: Feasibility of Elective Nodal Irradiation (ENI) and Involved Field Irradiation (IFI) in Radiotherapy for the Elderly Patients (Aged ≥ 70 Years) with Esophageal Squamous Cell Cancer: A Retrospective Analysis from a Single Institute.

    No full text
    We conducted a retrospective analysis to assess the feasibility of involved field irradiation (IFI) in elderly patients with esophageal squamous cell cancer (ESCC).We performed a retrospective review of the records of elderly patients (≥ 70 years) with unresectable ESCC and no distant metastases who received treatment with radiotherapy between January 2009 and March 2013. According to the irradiation volume, patients were allocated into either the elective nodal irradiation (ENI) group or the IFI group. Overall survival (OS), progression-free survival (PFS) and treatment-related toxicities were compared between the two groups.A total of 137 patients were enrolled. Fifty-four patients (39.4%) were allocated to the ENI group and 83 patients (60.6%) to the IFI group, the median doses in the two groups were 60 Gy and 59.4 Gy, respectively. For the entire group, the median survival time (MST) and PFS were 16 months and 12 months, respectively. The median PFS and 3-year PFS rate in the ENI group were 13 months and 20.6%, compared to 11 months and 21.0% in the IFI groups (p = 0.61). The MST and 3-year OS rate in the ENI and IFI groups were 17 months and 26.4% and 15.5 months and 21.7%, respectively (p = 0.25). The rate of grade ≥ 3 acute irradiation esophagitis in the ENI group was significantly higher than that in the IFI group (18.5% vs. 6.0%; p = 0.027). Other grade ≥ 3 treatment-related toxicities did not significantly differ between the two groups.IFI resulted in decreased irradiation toxicities without sacrificing OS in elderly patients with ESCC
    corecore