9 research outputs found

    A Ground-Motion Predictive Model for Iran and Turkey for Horizontal PGA, PGV, and 5% Damped Response Spectrum: Investigation of Possible Regional Effects

    No full text
    We present a ground-motion prediction equation (GMPE) for Turkey and Iran to investigate the possible regional effects on ground-motion amplitudes in shallow active crustal earthquakes. The proposed GMPE is developed from a subset of the recently compiled strong-motion database of the Earthquake Model of the Middle East Region project (see Data and Resources). A total of 670 Turkish and 528 Iranian accelerograms with depths down to 35 km are used to estimate peak ground acceleration, peak ground velocity, and 5% damped elastic pseudospectral acceleration ordinates of 0: 01 s <= T <= 4 s. The moment magnitude range of the model is 4 <= M-w <= 8, and the maximum Joyner-Boore distance is R-JB = 200 km. The functional form considers three major fault mechanisms (strike slip, normal, and reverse). The nonlinear soil behavior is a function of V-S30 (average shear-wave velocity in the upper 30 m of soil profile). Our observations from empirical and estimated ground-motion trends advocate regional differences in the territories covered by Iran and Turkey that originate from the differences in Q factors, kappa, and near-surface velocity profiles. These factors eventually affect the magnitude- and distance-dependent scaling of spectral amplitudes in Iran and Turkey. In essence, the ground-motion amplitudes of these two neighboring countries would draw patterns different than the ground-motion estimates of GMPEs developed from the strong-motion databases of shallow active crustal earthquakes from multiple countries

    Near-source strong motion database catalog for Iran

    No full text
    This paper discusses a newly developed high-quality integrated dataset of shallow earthquake ground motions that occurred in Iran, from 1976 to 2013. A total of 860 three-component strong motion records are processed from 183 earthquake events, moment magnitudes 5.0 ≤ Mw ≤ 7.4, and rupture distances of RRUP ≤ 120 km. Strong motion data from Iran having special tectonic features and shallow earthquakes with depths less than 35 km are included. This paper presents a thorough procedure used to collect and to generate a database following the Next-Generation Attenuation-West research projects. This database can be used in the development and ranking of ground motion models and for seismological and engineering hazard and risk analyses. Unprocessed strong motion records are obtained from the Iranian Strong Motion Network (ISMN). The time series collected were thoroughly examined through several rounds of quality reviews. The newly generated database includes the peak ground acceleration, peak ground velocity, and pseudo-spectral acceleration for the 5% damped with periods ranging from 0.01 to 10 s. The database also includes ground motion information and source characterization and parameters. This study is the near-source compiled ground motion database that can be used for Iran, and it is consistent with standard worldwide databases

    Investigation of coda and body wave attenuation functions in Central Asia

    No full text
    In this study, we evaluate the body and coda wave attenuation characteristics within Kyrgyzstan and Tajikistan as part of Central Asia. The selected database consists of 354 broadband seismograms from 179 local earthquakes recorded by 24 different stations within the period of 2015 through 2018. First, coda Q has been inferred for different coda window lengths of 20, 30, 40, and 50 s using the single-backscattering interpretation. The coda Q values increase by increasing the coda window length. We show that coda attenuation properties in Central Asia are better modeled by multiple-scattering and surface wave regimes for long-distance records without invoking any depth dependence of the attenuation properties in the crust. Furthermore, standard errors and convergence of different components’ QC indicate that we can fit envelope records of coda waves much better using a coda window length of 50 s. Therefore, we evaluate average coda quality factor functions as QC = 261 f0.601 and QC = 219 f0.633 assuming multiple-scattering and surface wave regimes for a coda window length of 50 s in the frequency range of 1 to 20 Hz for distances up to 200 km. We also show that the source to site distance of records has a significant impact on coda Q estimates. For a shorter distance range up to 100 km, attenuation attributes of Central Asia are better captured by a single-scattering model. We reevaluate the average coda quality factor function as QC = 222 f0.692 assuming a single-backscattering model for a coda window length of 50 s in the frequency range of 1 to 20 Hz for distances up to 100 km. Moreover, we determine QP = 158 f0.706 and QS = 152 f0.856 with a geometrical spreading function of R−1 using the multiple-station coda normalization method

    A study of horizontal-to-vertical component spectral ratio as a proxy for site classification in central Asia

    No full text
    Tien Shan of central Asia is known as one of the world\u27s largest, youngest and most active intracontinental orogens. In this study, we implemented the horizontal-to-vertical spectral ratio (HVSR) technique as a widely used first-order approximation of the site effect parameters (i.e. fundamental frequency and site amplification). A set of data including 2119 strong-motion recordings from 468 earthquakes with hypocentral distances up to 500 km and small to moderate moment magnitudes (Mw ∼3.0-5.5) recorded by 24 broad-band stations from five different networks, located in Afghanistan, Tajikistan and Kyrgyzstan was deployed to investigate site-specific characteristics. We fitted a Gaussian-shape pulse function to evaluate fundamental frequencies and site amplifications. The HVSRs analysis revealed that although the majority of the stations (16 out of 24) show flat amplification functions, there are few stations with single sharp amplification functions. Then, we classified the stations based on the predominant frequency. Furthermore, we approximated the time-averaged shear wave velocity in the uppermost 30 m (VS30) using the fundamental frequency and its corresponding amplitude. Moreover, we compared the HVSRs obtained from P waves, S waves, coda and pre-event noise. All peak frequencies including the fundamental frequency estimated from different seismic phases are in good agreement; whereas generally, the amplitude of the P-wave window is the lowest, the amplitudes of the S wave and noise windows are similar to the whole record and the amplitudes of early and late coda windows are the highest. We also observed that the HVSRs of noise using a 5 s window may have anomalous high amplitudes and peaks. These anomalous high amplitudes and peaks in the noise HVSRs indicate the existence of some unnatural sources or artefacts such as traffic and wind with specific resonance frequencies, suggesting 5 s ambient noise window is insufficient to capture site characteristics. Finally, to assess the reliability of the determined geotechnical results, we implemented a blind theoretical HVSR inversion to obtain representative shear wave velocity profiles as well as VS30 along with associated uncertainties for stations characterized by a single-peak HVSR curve using a Bayesian statistical framework

    The 2014 seismic hazard model of the Middle East: overview and results

    No full text
    The Earthquake Model of Middle East (EMME) Project aimed to develop regional scale seismic hazard and risk models uniformly throughout a region extending from the Eastern Mediterranean in the west to the Himalayas in the east and from the Gulf of Oman in the south to the Greater Caucasus in the North; a region which has been continuously devastated by large earthquakes throughout the history. The 2014 Seismic Hazard Model of Middle East (EMME-SHM14) was developed with the contribution of several institutions from ten countries. The present paper summarizes the efforts towards building a homogeneous seismic hazard model of the region and highlights some of the main results of this model. An important aim of the project was to transparently communicate the data and methods used and to obtain reproducible results. By doing so, the use of the model and results will be accessible by a wide community, further support the mitigation of seismic risks in the region and facilitate future improvements to the seismic hazard model. To this end all data, results and methods used are made available through the web-portal of the European Facilities for Earthquake Hazard and Risk (www.efehr.org)
    corecore