55 research outputs found

    Two negative randomized controlled trials in lupus: now what?

    Get PDF
    Recently, two large randomized controlled trials of distinct biologic therapies in systemic lupus erythematosus, B-cell depletion with rituximab and co-stimulatory blockade with CTLA4Ig (abatacept), failed to meet primary endpoints. Given the great need for new treatments in lupus, these results were met with disappointment and have left the rheumatology and immunology community searching for an explanation. Are these experimental agents ineffective in lupus or are there trial design issues or other considerations? In this commentary, we discuss our perspective on these results within the context of current understanding of the pathophysiology of lupus and the mechanism of action of biologic therapies

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    BACKGROUND: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. METHODS: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. RESULTS: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 mug/ml of Liberase TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4(+) and CD8(+) T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. CONCLUSIONS: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers

    A novel subset of memory B cells is enriched in autoreactivity and correlates with adverse outcomes in SLE

    Get PDF
    We previously reported that some systemic lupus erythematosus (SLE) patients have a population of circulating memory B cells with >2-fold higher levels of CD19. We show here that the presence of CD19hi B cells correlates with long-term adverse outcomes. These B cells do not appear anergic, as they exhibit high basal levels of phosphorylated Syk and ERK1/2, signal transduce in response to BCR crosslinking, and can become plasma cells (PCs) in vitro. Autoreactive anti-Smith (Sm) B cells are enriched in this population and the degree of enrichment correlates with the log of the serum anti-Sm titer, arguing that they undergo clonal expansion before PC differentiation. PC differentiation may occur at sites of inflammation, as CD19hi B cells have elevated CXCR3 levels and chemotax in response to its ligand CXCL9. Thus, CD19hi B cells are precursors to anti-self PCs, and identify an SLE patient subset likely to experience poor clinical outcomes

    The chromatin landscape of pathogenic transcriptional cell states in rheumatoid arthritis

    Get PDF
    Synovial tissue inflammation is a hallmark of rheumatoid arthritis (RA). Recent work has identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral helper cells; however, the epigenetic regulation of these states has yet to be defined. Here, we examine genome-wide open chromatin at single-cell resolution in 30 synovial tissue samples, including 12 samples with transcriptional data in multimodal experiments. We identify 24 chromatin classes and predict their associated transcription factors, including a CD8 + GZMK+ class associated with EOMES and a lining fibroblast class associated with AP-1. By integrating with an RA tissue transcriptional atlas, we propose that these chromatin classes represent ‘superstates’ corresponding to multiple transcriptional cell states. Finally, we demonstrate the utility of this RA tissue chromatin atlas through the associations between disease phenotypes and chromatin class abundance, as well as the nomination of classes mediating the effects of putatively causal RA genetic variants.</p

    Automated multi-scale computational pathotyping (AMSCP) of inflamed synovial tissue

    Get PDF
    Rheumatoid arthritis (RA) is a complex immune-mediated inflammatory disorder in which patients suffer from inflammatory-erosive arthritis. Recent advances on histopathology heterogeneity of RA synovial tissue revealed three distinct phenotypes based on cellular composition (pauci-immune, diffuse and lymphoid), suggesting that distinct etiologies warrant specific targeted therapy which motivates a need for cost effective phenotyping tools in preclinical and clinical settings. To this end, we developed an automated multi-scale computational pathotyping (AMSCP) pipeline for both human and mouse synovial tissue with two distinct components that can be leveraged together or independently: (1) segmentation of different tissue types to characterize tissue-level changes, and (2) cell type classification within each tissue compartment that assesses change across disease states. Here, we demonstrate the efficacy, efficiency, and robustness of the AMSCP pipeline as well as the ability to discover novel phenotypes. Taken together, we find AMSCP to be a valuable cost-effective method for both pre-clinical and clinical research

    The immune cell landscape in kidneys of patients with lupus nephritis.

    Get PDF
    Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies
    • …
    corecore