19 research outputs found

    Derivation of the Gutenberg-Richter Empirical Formula from the Solution of the Generalized Logistic Equation

    Full text link
    We have written a new equation to study the statistics of earthquake distributions. We call this equation "the generalized logistic equation". The Gutenberg-Richter frequency-magnitude formula was derived from the solution of the generalized logistic equation as an asymptotic case in approximation of large magnitudes. To illustrate how the found solution of the generalized logistic equation works, it was used to approximate the observed cumulative distribution of earthquakes in four different geological provinces: the Central Atlantic (40N-25N, 5W-35W), Canary Islands, Magellan Mountains (20N-9S, 148E-170E), and the Sea of Japan. This approximation showed the excellent fit between the theoretical curves and observed data for earthquake magnitudes 1<m<9.Comment: 10 pages, 2 figures, 1 table, 8 references. Submitted to Natural Science, Earthquakes special issu

    The mRubyFT Protein, Genetically Encoded Blue-to-Red Fluorescent Timer.

    Full text link
    peer reviewedGenetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms of mFTs are 2-3- and 5-7-fold dimmer compared to the brightness of the enhanced green fluorescent protein (EGFP). To address this limitation, we developed a blue-to-red fluorescent timer, named mRubyFT, derived from the bright mRuby2 red fluorescent protein. The blue form of mRubyFT reached its maximum at 5.7 h and completely transformed into the red form that had a maturation half-time of 15 h. Blue and red forms of purified mRubyFT were 4.1-fold brighter and 1.3-fold dimmer than the respective forms of the mCherry-derived Fast-FT timer in vitro. When expressed in mammalian cells, both forms of mRubyFT were 1.3-fold brighter than the respective forms of Fast-FT. The violet light-induced blue-to-red photoconversion was 4.2-fold less efficient in the case of mRubyFT timer compared to the same photoconversion of the Fast-FT timer. The timer behavior of mRubyFT was confirmed in mammalian cells. The monomeric properties of mRubyFT allowed the labeling and confocal imaging of cytoskeleton proteins in live mammalian cells. The X-ray structure of the red form of mRubyFT at 1.5 Ã… resolution was obtained and analyzed. The role of the residues from the chromophore surrounding was studied using site-directed mutagenesis

    Multicaloric Effect in 0–3-Type MnAs/PMN–PT Composites

    No full text
    The new xMnAs/(1 − x)PMN–PT (x = 0.2, 0.3) multicaloric composites, consisting of the modified PMN–PT-based relaxor-type ferroelectric ceramics and ferromagnetic compound of MnAs were fabricated, and their structure, magnetic, dielectric properties, and caloric effects were studied. Both components of the multicaloric composite have phase transition temperatures around 315 K, and large electrocaloric (~0.27 K at 20 kV/cm) and magnetocaloric (~13 K at 5 T) effects around this temperature were observed. As expected, composite samples exhibit a decrease in magnetocaloric effect (<1.4 K at 4 T) in comparison with an initial MnAs magnetic component (6.7 K at 4 T), but some interesting phenomena associated with magnetoelectric interaction between ferromagnetic and ferroelectric components were observed. Thus, a composite with x = 0.2 exhibits a double maximum in isothermal magnetic entropy changes, while a composite with x = 0.3 demonstrates behavior more similar to MnAs. Based on the results of experiments, the model of the multicaloric effect in an MnAs/PMN–PT composite was developed and different scenario observations of multicaloric response were modeled. In the framework of the proposed model, it was shown that boosting of caloric effect could be achieved by (1) compilation of ferromagnetic and ferroelectric components with large caloric effects in selected mass ratio and phase transition temperature; and (2) choosing of magnetic and electric field coapplying protocol. The 0.3MnAs/0.7PMN–PT composite was concluded to be the optimal multicaloric composite and a phase shift ∆φ = −π/4 between applied manetic fields can provide a synergetic caloric effect at a working point of 316 K

    High Triglycerides Are Associated with Low Thrombocyte Counts and High VEGF in Nephropathia Epidemica

    No full text
    Nephropathia epidemica (NE) is a mild formof hemorrhagic fever with renal syndrome. Several reports have demonstrated a severe alteration in lipoproteinmetabolism. However, little is known about changes in circulating lipids in NE. The objectives of this study were to evaluate changes in serum total cholesterol, high density cholesterol (HDCL), and triglycerides. In addition to evaluation of serum cytokine activation associations, changes in lipid profile and cytokine activation were determined for gender, thrombocyte counts, and VEGF. Elevated levels of triglycerides and decreased HDCL were observed in NE, while total cholesterol did not differ from controls. High triglycerides were associated with both the lowest thrombocyte counts and high serum VEGF, as well as a high severity score. Additionally, there were higher levels of triglycerides in male than female NE patients. Low triglycerides were associated with upregulation of IFN-gamma and IL-12, suggesting activation of Th1 helper cells. Furthermore, levels of IFN-gamma and IL-12 were increased in patients with lower severity scores, suggesting that a Th1 type immune response is playing protective role in NE. These combined data advance the understanding of NE pathogenesis and indicate a role for high triglycerides in disease severity

    Urinary Clusterin Is Upregulated in Nephropathia Epidemica

    Get PDF
    Kidney insufficiency is a hallmark of nephropathia epidemica (NE). Little is known about the mechanisms of the NE kidney pathology, with current knowledge mainly based on findings in postmortem tissue. We have analyzed kidney damage biomarkers in urine collected from early-and late-phase NE using Bio-Plex kidney toxicity panels 1 and 2. To determine the disease specificity, kidney damage biomarkers were also analyzed in urine samples from patients diagnosed with gout, type 2 diabetes, systemic lupus erythematosus, and chronic kidney insufficiency. Analysis of 12 biomarkers suggests damage to the kidney proximal tubule at the onset of NE. Also, upregulation of biomarkers of inflammation and leukocyte chemotaxis were detected in NE urine. Furthermore, increased clusterin levels were found in early-and late-phase NE urine. Comparative analysis revealed that clusterin is a biomarker, upregulated in NE urine

    Novel Genetically Encoded Bright Positive Calcium Indicator NCaMP7 Based on the mNeonGreen Fluorescent Protein

    No full text
    Green fluorescent genetically encoded calcium indicators (GECIs) are the most popular tool for visualization of calcium dynamics in vivo. However, most of them are based on the EGFP protein and have similar molecular brightnesses. The NTnC indicator, which is composed of the mNeonGreen fluorescent protein with the insertion of troponin C, has higher brightness as compared to EGFP-based GECIs, but shows a limited inverted response with an ΔF/F of 1. By insertion of a calmodulin/M13-peptide pair into the mNeonGreen protein, we developed a green GECI called NCaMP7. In vitro, NCaMP7 showed positive response with an ΔF/F of 27 and high affinity (Kd of 125 nM) to calcium ions. NCaMP7 demonstrated a 1.7-fold higher brightness and similar calcium-association/dissociation dynamics compared to the standard GCaMP6s GECI in vitro. According to fluorescence recovery after photobleaching (FRAP) experiments, the NCaMP7 design partially prevented interactions of NCaMP7 with the intracellular environment. The NCaMP7 crystal structure was obtained at 1.75 Å resolution to uncover the molecular basis of its calcium ions sensitivity. The NCaMP7 indicator retained a high and fast response when expressed in cultured HeLa and neuronal cells. Finally, we successfully utilized the NCaMP7 indicator for in vivo visualization of grating-evoked and place-dependent neuronal activity in the visual cortex and the hippocampus of mice using a two-photon microscope and an NVista miniscope, respectively

    FGCaMP7, an Improved Version of Fungi-Based Ratiometric Calcium Indicator for In Vivo Visualization of Neuronal Activity

    No full text
    Genetically encoded calcium indicators (GECIs) have become a widespread tool for the visualization of neuronal activity. As compared to popular GCaMP GECIs, the FGCaMP indicator benefits from calmodulin and M13-peptide from the fungi Aspergillus niger and Aspergillus fumigatus, which prevent its interaction with the intracellular environment. However, FGCaMP exhibits a two-phase fluorescence behavior with the variation of calcium ion concentration, has moderate sensitivity in neurons (as compared to the GCaMP6s indicator), and has not been fully characterized in vitro and in vivo. To address these limitations, we developed an enhanced version of FGCaMP, called FGCaMP7. FGCaMP7 preserves the ratiometric phenotype of FGCaMP, with a 3.1-fold larger ratiometric dynamic range in vitro. FGCaMP7 demonstrates 2.7- and 8.7-fold greater photostability compared to mEGFP and mTagBFP2 fluorescent proteins in vitro, respectively. The ratiometric response of FGCaMP7 is 1.6- and 1.4-fold higher, compared to the intensiometric response of GCaMP6s, in non-stimulated and stimulated neuronal cultures, respectively. We reveal the inertness of FGCaMP7 to the intracellular environment of HeLa cells using its truncated version with a deleted M13-like peptide; in contrast to the similarly truncated variant of GCaMP6s. We characterize the crystal structure of the parental FGCaMP indicator. Finally, we test the in vivo performance of FGCaMP7 in mouse brain using a two-photon microscope and an NVista miniscope; and in zebrafish using two-color ratiometric confocal imaging
    corecore