752 research outputs found

    PIH40 Cross-Country Profile of Adult Caregivers

    Get PDF

    PMH57 Cross-Country Comparisons of Adults with Major Depressive Disorder

    Get PDF

    Gated Mode Superconducting Nanowire Single Photon Detectors

    Full text link
    Single Photon Detectors (SPD) are fundamental to quantum optics and quantum information. Superconducting Nanowire SPDs (SNSPD) [1] provide high performance in terms of quantum efficiency (QE), dark count rate (DCR) and timing jitter [2], but have limited maximum count rate (MCR) when operated as a free-running mode (FM) detector [3, 4]. However, high count rates are needed for many applications like quantum computing [5] and communication [6], and laser ranging [7]. Here we report the first operation of SNSPDs in a gated mode (GM) that exploits a single photon triggered latching phenomenon to detect photons. We demonstrate operation of a large active area single element GM-SNSPD at 625MHz, one order of magnitude faster than its FM counterpart. Contrary to FM-SNSPDs, the MCR in GM can be pushed to GHz range without a compromise on the active area or QE, while reducing the DCR

    PHP I 2: ATTITUDES AS OUTCOMES: UNDERSTANDING THE COMPLEXITY OF THE HEALTHCARE CONSUMER

    Get PDF

    PCV172 TREATMENT PATTERNS AMONG PATIENTS WITH HYPERTENSION: RESULTS OF A US SURVEY

    Get PDF

    α,ω-Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach

    No full text
    International audienceα,ω-Di(glycerol carbonate) telechelic poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), poly(ester ether) (PEE), and poly(butadiene) (PBD) have been synthesized through chemical modification of the corresponding α,ω-dihydroxy telechelic polymers (PPG-OH2, PEG-OH2, PEE-OH2 and PBD-OH2, respectively). Tosylation of the polymer diols with 4-tosylmethyl-1,3-dioxolan-2-one (GC-OTs) afforded, in high yields, the desired PPG, PEG, PEE and PBD end-capped at both termini with a five-membered ring cyclic glycerol carbonate (4-hydroxymethyl-1,3-dioxolan-2-one, GC). The GC-functionalization of the polymers at both chain-ends has been confirmed by NMR (1H, 13C, 1D and 2D) and FTIR spectroscopies. Using PPG-GC2 to demonstrate the concept, the corresponding polyhydroxyurethanes (PHUs/non-isocyanate polyurethanes (NIPUs)) have been subsequently prepared following a non-isocyanate method upon ring-opening catalyst-free polyaddition of the PPG-GC2 with JEFFAMINEs (Mn = 230-2000 g mol−1). The effect of various additives introduced during the polyaddition reaction has been studied at different temperatures. In particular, addition of LiBr (5 mol%) to the reaction medium was found to slightly promote the cyclocarbonate/amine reaction. The polymerization process was supported by FTIR and SEC analyses

    Identification of therapeutic targets applicable to clinical strategies in ovarian cancer

    Get PDF
    BACKGROUND: shRNA-mediated lethality screening is a useful tool to identify essential targets in cancer biology. Ovarian cancer (OC) is extremely heterogeneous and most cases are advanced stages at diagnosis. OC has a high response rate initially, but becomes resistant to standard chemotherapy. We previously employed high throughput global shRNA sensitization screens to identify NF-kB related pathways. Here, we re-analyzed our previous shRNA screens in an unbiased manner to identify clinically applicable molecular targets. METHODS: We proceeded with siRNA lethality screening using the top 55 genes in an expanded set of 6 OC cell lines. We investigated clinical relevance of candidate targets in The Cancer Genome Atlas OC dataset. To move these findings towards the clinic, we chose four pharmacological inhibitors to recapitulate the top siRNA effects: Oxozeaenol (for MAP3K7/TAK1), BI6727 (PLK1), MK1775 (WEE1), and Lapatinib (ERBB2). Cytotoxic effects were measured by cellular viability assay, as single agents and in 2-way combinations. Co-treatments were evaluated in either sequential or simultaneous exposure to drug for short term and extended periods to simulate different treatment strategies. RESULTS: Loss-of-function shRNA screens followed by short-term siRNA validation screens identified therapeutic targets in OC cells. Candidate genes were dysregulated in a subset of TCGA OCs although the alterations of these genes showed no statistical significance to overall survival. Pharmacological inhibitors such as Oxozeaenol, BI6727, and MK1775 showed cytotoxic effects in OC cells regardless of cisplatin responsiveness, while all OC cells tested were cytostatic to Lapatinib. Co-treatment with BI6727 and MK1775 at sub-lethal concentrations was equally potent to BI6727 alone at lethal concentrations without cellular re-growth after the drugs were washed off, suggesting the co-inhibition at reduced dosages may be more efficacious than maximal single-agent cytotoxic concentrations. CONCLUSIONS: Loss-of-function screen followed by in vitro target validation using chemical inhibitors identified clinically relevant targets. This approach has the potential to systematically refine therapeutic strategies in OC. These molecular target-driven strategies may provide additional therapeutic options for women whose tumors have become refractory to standard chemotherapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-016-2675-5) contains supplementary material, which is available to authorized users

    A superconducting-nanowire 3-terminal electronic device

    Full text link
    In existing superconducting electronic systems, Josephson junctions play a central role in processing and transmitting small-amplitude electrical signals. However, Josephson-junction-based devices have a number of limitations including: (1) sensitivity to magnetic fields, (2) limited gain, (3) inability to drive large impedances, and (4) difficulty in controlling the junction critical current (which depends sensitively on sub-Angstrom-scale thickness variation of the tunneling barrier). Here we present a nanowire-based superconducting electronic device, which we call the nanocryotron (nTron), that does not rely on Josephson junctions and can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nTron is a 3-terminal, T-shaped planar device with a gain of ~20 that is capable of driving impedances of more than 100 k{\Omega}, and operates in typical ambient magnetic fields at temperatures of 4.2K. The device uses a localized, Joule-heated hotspot formed in the gate to modulate current flow in a perpendicular superconducting channel. We have characterized the nTron, matched it to a theoretical framework, and applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nTron has immediate applications in classical and quantum communications, photon sensing and astronomy, and its performance characteristics make it compatible with existing superconducting technologies. Furthermore, because the hotspot effect occurs in all known superconductors, we expect the design to be extensible to other materials, providing a path to digital logic, switching, and amplification in high-temperature superconductors

    Ring-opening metathesis polymerization of cyclooctene derivatives with chain transfer agents derived from glycerol carbonate

    No full text
    International audienceThe synthesis of a variety of mono- and di-(glycerol carbonate) telechelic polyolefins has been achieved upon ruthenium-catalyzed ring-opening metathesis polymerization (ROMP) of cyclooctene (COE) derivatives in the presence of a vinyl or acryloyl derivative of glycerol carbonate (GC) acting as a chain-transfer agent (CTA). Reaction monitoring based on SEC and 1H NMR analyses suggested that the ROMP proceeds through the formation of first the α-GC,ω-vinyl-poly(cyclooctene) (PCOE) intermediate, which eventually evolves over time into the α,ω-di(GC)-PCOE. The nature of the solvent was shown to have a significant impact on both the reaction rates and the eventual selectivity for the mono-/di-telechelic PCOE. ROMP of 3-alkyl (methyl, ethyl, n-hexyl)-substituted COEs (3-R-COEs) afforded only the α-GC,ω-vinyl-poly(3-R-COE)s, as a result of the steric hindrance around the active intermediate, while a 5-ethyl substituted COE (5-Et-COE) enabled access to the corresponding α,ω-di(GC)-poly(5-Et-COE). The ROMP of 5,6-epoxy-, 5-hydroxy- and 5-oxo-functionalized COEs in the presence of acryloyl-GC as the CTA has also been achieved, affording from the first two monomers polymers with GC end-groups at both extremities, while a 60 : 40 mixture of mono- and di-GC terminated P(5-O[double bond, length as m-dash]COE) was observed in the latter case
    • …
    corecore