7 research outputs found

    БостояниС ΠΈΡ…Ρ‚ΠΈΠΎ-, ΠΌΠ΅Π·ΠΎ- ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π½Ρ‹Ρ… комплСксов Ρƒ ΠšΡ€Ρ‹ΠΌΡΠΊΠΎΠ³ΠΎ полуострова (Π§Ρ‘Ρ€Π½ΠΎΠ΅ ΠΌΠΎΡ€Π΅) Π² связи с особСнностями гидрологичСского Ρ€Π΅ΠΆΠΈΠΌΠ° Π² октябрС 2016 Π³.

    Get PDF
    ΠšΠ»ΠΈΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ измСнСния Π² гидрологичСском Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π§Ρ‘Ρ€Π½ΠΎΠ³ΠΎ моря, ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π΅ΠΌΡ‹Π΅ с 1990-Ρ… Π³Π³., ΠΎΡ‚Ρ€Π°Π·ΠΈΠ»ΠΈΡΡŒ Π½Π° состоянии эпипСлагичСских комплСксов морских ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Π½Π° сСзонной измСнчивости ΠΈΡ… биологичСских Ρ†ΠΈΠΊΠ»ΠΎΠ². Π­Ρ‚ΠΎ ΠΎΠΊΠ°Π·Π°Π»ΠΎ сущСствСнноС влияниС Π½Π° Ρ„Π΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ нСрСста ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… популяций Ρ€Ρ‹Π±, Π²ΠΈΠ΄ΠΎΠ²ΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΈ пространствСнноС распрСдСлСниС ΠΈΡ…Ρ‚ΠΈΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° ΡƒΡΡ‚ΠΎΡΠ²ΡˆΠΈΠ΅ΡΡ трофичСскиС Π²Π·Π°ΠΈΠΌΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π² ΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π½ΠΎΠΌ сообщСствС. Π’ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌ ΠΈΡ‚ΠΎΠ³Π΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ звСньями трофичСской Ρ†Π΅ΠΏΠΈ Π² эпипСлагичСских комплСксах, ΠΈΡ… сСзонная ΠΈ мСТгодовая ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ нСрСста Ρ€Ρ‹Π±, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго массовых промысловых Π²ΠΈΠ΄ΠΎΠ², ΠΈ Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ успСх пополнСния ΠΈΡ… Π±ΡƒΠ΄ΡƒΡ‰ΠΈΡ… ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠΉ. Π‘ Ρ†Π΅Π»ΡŒΡŽ изучСния Π²ΠΈΠ΄ΠΎΠ²ΠΎΠ³ΠΎ состава, числСнности ΠΈ пространствСнного распрСдСлСния ΠΈΡ…Ρ‚ΠΈΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π° Π² октябрС 2016 Π³. (89-ΠΉ рСйс НИБ Β«ΠŸΡ€ΠΎΡ„Π΅ΡΡΠΎΡ€ Водяницкий», 30 сСнтября β€” 19 октября) Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования Π² ΡˆΠ΅Π»ΡŒΡ„ΠΎΠ²Ρ‹Ρ… ΠΈ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… Π²ΠΎΠ΄Π°Ρ… Π§Ρ‘Ρ€Π½ΠΎΠ³ΠΎ моря Ρƒ ΠšΡ€Ρ‹ΠΌΡΠΊΠΎΠ³ΠΎ полуострова, ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠΊΡ€Π° ΠΈ Π»ΠΈΡ‡ΠΈΠ½ΠΊΠΈ Ρ€Ρ‹Π±, Π½ΠΎ ΠΈ биомасса ΠΌΠ΅Π·ΠΎ- ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π°. ΠŸΡ€ΠΎΠ±Ρ‹ ΠΈΡ…Ρ‚ΠΈΠΎ- ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π° ΠΎΡ‚Π±ΠΈΡ€Π°Π»ΠΈ ΡΠ΅Ρ‚ΡŒΡŽ Π‘ΠΎΠ³ΠΎΡ€ΠΎΠ²Π° β€” Расса (ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π²Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ отвСрстия β€” 0,5 ΠΌΒ²; ячСя β€” 300 ΠΌΠΊΠΌ) ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚ΠΎΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΎΠ²ΠΎΠ² ΠΎΡ‚ Π΄Π½Π° Π΄ΠΎ повСрхности моря Π² области ΡˆΠ΅Π»ΡŒΡ„Π° ΠΈ ΠΎΡ‚ Π½ΠΈΠΆΠ½Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ кислородной Π·ΠΎΠ½Ρ‹ Π΄ΠΎ повСрхности моря Π² Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ²ΠΎΠ΄Π½ΠΎΠΉ части. Π˜Ρ…Ρ‚ΠΈΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½ фиксировали 4%-Π½Ρ‹ΠΌ раствором Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ½Π° ΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΠΎΠ·ΠΆΠ΅ ΠΏΠΎΠ΄ микроскопом, опрСдСляя таксономичСский состав ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ ΠΏΠΎ возмоТности β€” Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΈ состав ΠΏΠΈΡ‰ΠΈ Π² ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°Ρ… Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€Ρ‹Π±. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Π²ΠΈΠ΄ΠΎΠ²ΠΎΠΌ составС ΠΈ пространствСнном распрСдСлСнии ΠΈΡ…Ρ‚ΠΈΠΎ-, ΠΌΠ΅Π·ΠΎ- ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎ ΠΏΠΈΡ‚Π°Π½ΠΈΠΈ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€Ρ‹Π± Π§Ρ‘Ρ€Π½ΠΎΠ³ΠΎ моря Ρƒ ΠšΡ€Ρ‹ΠΌΡΠΊΠΎΠ³ΠΎ полуострова Π² октябрС 2016 Π³. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ ΡΡŠΡ‘ΠΌΠΊΠΈ соотвСтствовал Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„Π°Π·Π΅ осСннСго гидрологичСского сСзона. Π˜Ρ…Ρ‚ΠΈΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½ Π±Ρ‹Π» прСдставлСн ΠΈΠΊΡ€ΠΎΠΉ ΠΈ Π»ΠΈΡ‡ΠΈΠ½ΠΊΠ°ΠΌΠΈ 9 Π²ΠΈΠ΄ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ 6 Π²ΠΈΠ΄ΠΎΠ² ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠ²ΠΎΠ΄Π½Ρ‹Ρ… Ρ€Ρ‹Π±. БрСдняя Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΈΠΊΡ€Ρ‹ Ρ€Ρ‹Π± составляла 2,92, Π° Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ β€” 3,56 экз.Β·ΠΌβˆ’2. Низкая доля (30 %) ΠΌΡ‘Ρ€Ρ‚Π²ΠΎΠΉ ΠΈΠΊΡ€Ρ‹ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ΄Π½ΠΎΠΉ хамсы Engraulis encrasicolus, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π΅Ρ‘ Ρ€Π°Π·Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Π² ΠΌΠΎΡ€Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠ²Π°Π»ΠΈ ΠΎ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ нСрСста. Биомасса Π·ΠΎΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π° возрастала Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΎΡ‚ ΡˆΠ΅Π»ΡŒΡ„Π° ΠΊ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ²ΠΎΠ΄Π½Ρ‹ΠΌ Ρ€Π°ΠΉΠΎΠ½Π°ΠΌ. ΠœΠ΅Π»ΠΊΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π»ΠΈ Π½Π° ΡˆΠ΅Π»ΡŒΡ„Π΅, обСспСчивая здСсь Π»ΡƒΡ‡ΡˆΠΈΠ΅ ΠΊΠΎΡ€ΠΌΠΎΠ²Ρ‹Π΅ условия для выТивания Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€Ρ‹Π±. НСсмотря Π½Π° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ биомассу ΠΆΠ΅Π»Π΅Ρ‚Π΅Π»Ρ‹Ρ…-ΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΡ„Π°Π³ΠΎΠ² Π² октябрС 2016 Π³., ΠΈΡ… влияниС Π½Π° ΠΈΡ…Ρ‚ΠΈΠΎΠΏΠ»Π°Π½ΠΊΡ‚ΠΎΠ½Π½Ρ‹Π΅ комплСксы Π§Ρ‘Ρ€Π½ΠΎΠ³ΠΎ моря, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, ΠΎΡΡ‚Π°Π²Π°Π»ΠΎΡΡŒ нСсущСствСнным

    Trophic Relationships and Food Supply of Heterotrophic Animals in the Pelagic Ecosystem of the Black Sea

    Get PDF
    During recent decades, the Black Sea has been affected by many negative factors that strongly changed the condition of its ecosystem. Especially trophic relationships in the Black Sea pelagic system became very vulnerable influencing the food supply, productivity and abundance of many species and populations of this marine basin. Food is one of most important link between biota and its environment. In this monograph, the role and variability of trophodynamic processes that effect the well-being (health) of main heterotrophic components of ecosystem were analysed in detail for a few key species as indicators for estimation of ecosystem condition in whole. These are most significant mass species of the Black Sea pelagic ecosystem. Among copepods this is Calanus euxinus that dominates the mesozooplankton which makes up the fodder base of planktivorous fishes. Among gelatinous these are medusa Aurelia aurita and the alien ctenophores Mnemiopsis leidyi and Beroe ovata which affected strongly mesozooplankton composition. Lastly among fishes the anchovy Engraulis encrasicolus ponticus and sprat Sprattus sprattus phalericus that dominate small pelagic fishery. We considered in this monograph: β€’ Diel feeding behaviour, in situ feeding rate of Calanus euxinus and impact of mesozooplankton on primary production and phytoplankton biomass. β€’ The effect of vertical migrations on energy budget and its components in C. euxinus; metabolic substrates used in catabolic processes under both aerobic and hypoxic conditions, the role of reserve lipids and effect of abiotic factors on individual growth and population structure of this species. β€’ The intensity and efficiency of ingestion and energy transformation in three gelatinous species ( jellyfish Aurelia aurita, ctenophores Mnemiopsis leidyi and Beroe ovata) and their predatory impact on zooplankton community. β€’ Nutritional condition and food supply of anchovy and sprat in the close interaction with natural biotic and abiotic and anthropogenic factors. β€’ Tendencies in this interaction during long time space: since 1960 s till present years. β€’ Estimation of population condition of these species and its long-term change. This monograph is the collective work of Ukrainian and Turkish scientists studying complex hydrobiological problems of the Black Sea. Its aim is to reveal the significance of nutritional factors on the ecology of Black Sea biota, including changes which have already occurred, as well as offering some insight into changes that may happen in the future. Our joint investigations started in the first half of the 1990s, when conditions for the close cooperation of researchers from the two countries were suitable after the collapse of the Soviet era. This spirit continues to the present day. Professor Ümit Unluata, Director of Erdemli Institute of Marine Sciences (Middle East Technical University, Ankara) was of paramount importance in organising and fostering the work undertaken. We would like to devote this monograph to the memory of him, who died so prematurely. We are also grateful to Academician Professor V. N. Eremeev, Director of the Sevastopol Institute of Biology of the Southern Sea (National Academy of Sciences of Ukraine), and to the directors of Erdemli Institute of Marine Sciences (Professor Ilkay Salihoglu, Professor Sukru Besiktepe and Professor Ferit Bingel) who also made significant contributions to the Ukrainian–Turkish collaboration. We are grateful to Dr Bill Parr from the Black Sea Ecosystem Recovery Project for his valuable efforts in improving earlier drafts. All these investigations were carried out within the framework of the following five NATO linkage-grants: β€’ Pelagic animal food supply in the unstable Black Sea environment, β€’ Will the new alien ctenophore Beroe ovata control the plankton community in the Black Sea? β€’ Grazing, growth and production of Calanus euxinus in the Black Sea, β€’ Bioindicators for assessment of Black Sea ecosystem recovery, β€’ Adaptability and vulnerability of marine species in changing environments. And four TUBITAK - NASU joint projects: β€’ Quantification of the recent ctenophore invader Beroe ovata impact in the Black Sea β€’ Monitoring of the Black Sea anchovy and sprat, β€’ Salinity tolerance as a key factor of invasion success of the copepods of Calanus genus into the Sea of Marmara, β€’ Salinity tolerance as a key factor of invasion success of the mesozooplankton species into the Sea of Marmara. We hope that this publication will make a substantial contribution to future studies of the Black Sea ecosystem and offers further understanding of those features regulating biological processes in this unique marine basin

    Alternative conditions of mass appearance of the scyphozoan jellyfish, <i>Aurelia aurita</i> (Linnaeus, 1758), and the ctenophore, <i>Pleurobrachia pileus</i> (O.F. Muller, 1776), in plankton of the Black Sea

    Get PDF
    Aim.Β The aim of the study is to find out what external factors may be the driving force behind the growth and population dynamics of two ecologically similar species of gelatinous macroplankton (scyphomedusaΒ Aurelia auritaΒ and ctenophoreΒ Pleurobrachia pileus), which play an important role in the functioning of the pelagic ecosystem of the Black Sea.Material and Methods.Β The state of zooplankton populations was estimated by data obtained in 2000‐2014 in the outer shelf of Sevastopol Bay, where monthly quantitative samples of meso‐ and macroplankton were taken 2 miles of the coast (depth 50‐70 m). Weather and hydrology related changes were assessed using open databases.Results.Β It was been established that size‐specific growth rate of these species depends on weather and hydrological conditions in the winter‐spring months and varies from 0.85 to 1.02% day‐1Β and from 0.27 to 0.47% day‐1Β forΒ A. auritaΒ andΒ P. pileus, respectively.Conclusions.Β External factors unequally affect the growth of these species. Sub‐ latitudinal transit of warm air masses, accompanied by increased river flow and seawater circulation, activates the growth of the ctenophore, while sub‐meridional propagation of cold and dry air increases the growth rate of the jellyfish. In both cases, somatic growth is influenced by trophic relations, differing depending on the weather in February‐May. The changes in growth of ctenophore occur in parallel with synchronous variations in biomass of crustacea, while that in jellyfish may relate to an abundance of microplankton and its mesoplanktonic consumers
    corecore