5 research outputs found

    Genetic Characterization of Listeria from Food of Non-Animal Origin Products and from Producing and Processing Companies in Bavaria, Germany

    Get PDF
    Reported cases of listeriosis from food of non-animal origin (FNAO) are increasing. In order to assess the risk of exposure to Listeria monocytogenes from FNAO, the genetic characterization of the pathogen in FNAO products and in primary production and processing plants needs to be investigated. For this, 123 samples of fresh and frozen soft fruit and 407 samples of 39 plants in Bavaria, Germany that produce and process FNAO were investigated for Listeria contamination. As a result, 64 Listeria spp. isolates were detected using ISO 11290-1:2017. Environmental swabs and water and food samples were investigated. L. seeligeri (36/64, 56.25%) was the most frequently identified species, followed by L. monocytogenes (8/64, 12.50%), L. innocua (8/64, 12.50%), L. ivanovii (6/64, 9.38%), L. newyorkensis (5/64, 7.81%), and L. grayi (1/64, 1.56%). Those isolates were subsequently sequenced by whole-genome sequencing and subjected to pangenome analysis to retrieve data on the genotype, serotype, antimicrobial resistance (AMR), and virulence markers. Eight out of sixty-four Listeria spp. isolates were identified as L. monocytogenes. The serogroup analysis detected that 62.5% of the L. monocytogenes isolates belonged to serogroup IIa (1/2a and 3a) and 37.5% to serogroup IVb (4b, 4d, and 4e). Furthermore, the MLST (multilocus sequence typing) analysis of the eight detected L. monocytogenes isolates identified seven different sequence types (STs) and clonal complexes (CCs), i.e., ST1/CC1, ST2/CC2, ST6/CC6, ST7/CC7, ST21/CC21, ST504/CC475, and ST1413/CC739. The core genome MLST analysis also showed high allelic differences and suggests plant-specific isolates. Regarding the AMR, we detected phenotypic resistance against benzylpenicillin, fosfomycin, and moxifloxacin in all eight L. monocytogenes isolates. Moreover, virulence factors, such as prfA, hly, plcA, plcB, hpt, actA, inlA, inlB, and mpl, were identified in pathogenic and nonpathogenic Listeria species. The significance of L. monocytogenes in FNAO is growing and should receive increasing levels of attention

    Potential vorticity structure of embedded convection in a warm conveyor belt and its relevance for large-scale dynamics

    No full text
    Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones. They can influence large-scale flow evolution by modifying the potential vorticity (PV) distribution during their cross-isentropic ascent. Although WCBs are typically described as slantwise-ascending and stratiform-cloud-producing airstreams, recent studies identified convective activity embedded within the large-scale WCB cloud band. However, the impacts of this WCB-embedded convection have not been investigated in detail. In this study, we systematically analyze the influence of embedded convection in an eastern North Atlantic WCB on the cloud and precipitation structure, on the PV distribution, and on larger-scale flow. For this reason, we apply online trajectories in a high-resolution convection-permitting simulation and perform a composite analysis to compare quasi-vertically ascending convective WCB trajectories with typical slantwise-ascending WCB trajectories. We find that the convective WCB ascent leads to substantially stronger surface precipitation and the formation of graupel in the middle to upper troposphere, which is absent for the slantwise WCB category, indicating the key role of WCB-embedded convection for precipitation extremes. Compared to the slantwise WCB trajectories, the initial equivalent potential temperature of the convective WCB trajectories is higher, and the convective WCB trajectories originate from a region of larger potential instability, which gives rise to more intense cloud diabatic heating and stronger cross-isentropic ascent. Moreover, the signature of embedded convection is distinctly imprinted in the PV structure. The diabatically generated low-level positive PV anomalies, associated with a cyclonic circulation anomaly, are substantially stronger for the convective WCB trajectories. The slantwise WCB trajectories lead to the formation of a widespread region of low-PV air (that still have weakly positive PV values) in the upper troposphere, in agreement with previous studies. In contrast, the convective WCB trajectories form mesoscale horizontal PV dipoles at upper levels, with one pole reaching negative PV values. On a larger scale, these individual mesoscale PV anomalies can aggregate to elongated PV dipole bands extending from the convective updraft region, which are associated with coherent larger-scale circulation anomalies. An illustrative example of such a convectively generated PV dipole band shows that within around 10 h the negative PV pole is advected closer to the upper-level waveguide, where it strengthens the isentropic PV gradient and contributes to the formation of a jet streak. This suggests that the mesoscale PV anomalies produced by embedded convection upstream organize and persist for several hours and therefore can influence the synoptic-scale circulation. They thus can be dynamically relevant, influence the jet stream and (potentially) the downstream flow evolution, which are highly relevant aspects for medium-range weather forecast. Finally, our results imply that a distinction between slantwise and convective WCB trajectories is meaningful because the convective WCB trajectories are characterized by distinct properties.ISSN:2698-4016ISSN:2698-400

    Convective activity in an extratropical cyclone and its warm conveyor belt - a case-study combining observations and a convection-permitting model simulation

    No full text
    Warm conveyor belts (WCBs) are important Lagrangian features in extratropical cyclones for the evolution of clouds, precipitation and flow dynamics. According to the classical concept, WCBs rise continuously from the boundary layer to the upper troposphere with ascent rates of less than 50 hPa/hr. Recent studies identified embedded convection in WCBs with ascent rates exceeding 50 hPa/hr, however, its significance and characteristics have not yet been analysed systematically. This study presents a detailed analysis of a frontal wave cyclone that occurred during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) and investigates the occurrence of convection with ascent rates exceeding 100-200 hPa/hr embedded in the WCB. A set of diagnostics, based on the combination of Meteosat products, ECMWF data, and a convection-permitting simulation, reveals consistently that convection occurs frequently in the warm sector of the investigated cyclone, in particular in the region of the WCB. These convective regions are characterized by increased surface precipitation, low values of convective available potential energy, and significant large-scale forcing for ascent, indicating that this type of convection embedded in WCBs differs from classical air mass convection with higher vertical velocities. This is qualitatively confirmed by airborne radar observations of the considered cyclone with reflectivities hardly exceeding 30 dBZ. In the investigated WCB, the ascent is not continuous, but characterized by intermittent periods of very strong or even convective ascent and occasionally by short periods of descent. Together, these results provide a refined view on the concept of WCBs and its embedded convection

    Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy

    No full text
    Disturbances in the morphology and function of mitochondria cause neurological diseases, which can affect the central and peripheral nervous system. The i-AAA protease YME1L ensures mitochondrial proteostasis and regulates mitochondrial dynamics by processing of the dynamin-like GTPase OPA1. Mutations in YME1L cause a multi-systemic mitochondriopathy associated with neurological dysfunction and mitochondrial fragmentation but pathogenic mechanisms remained enigmatic. Here, we report on striking cell-type-specific defects in mice lacking YME1L in the nervous system. YME1L-deficient mice manifest ocular dysfunction with microphthalmia and cataracts and develop deficiencies in locomotor activity due to specific degeneration of spinal cord axons, which relay proprioceptive signals from the hind limbs to the cerebellum. Mitochondrial fragmentation occurs throughout the nervous system and does not correlate with the degenerative phenotype. Deletion of Oma1 restores tubular mitochondria but deteriorates axonal degeneration in the absence of YME1L, demonstrating that impaired mitochondrial proteostasis rather than mitochondrial fragmentation causes the observed neurological defects

    In Vitro Rapid Antigen Test Performance with the SARS-CoV-2 Variants of Concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta)

    No full text
    Rapid antigen tests (RATs) are an integral part of SARS-CoV-2 containment strategies. As emerging variants of concern (VOCs) displace the initially circulating strains, it is crucial that RATs do not fail to detect these new variants. In this study, four RATs for nasal swab testing were investigated using cultured strains of B.1.1 (non-VOC), B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta). Based on dilution series in cell culture medium and pooled saliva, the limit of detection of these RATs was determined in a laboratory setting. Further investigations on cross-reactivity were conducted using recombinant N-protein from seasonal human coronaviruses (hCoVs). RATs evaluated showed an overall comparable performance with cultured strains of the non-VOC B.1.1 and the VOCs Alpha, Beta, Gamma, and Delta. No cross-reactivity was detected with recombinant N-protein of the hCoV strains HKU1, OC43, NL63, and 229E. A continuous evaluation of SARS-CoV-2 RAT performance is required, especially with regard to evolving mutations. Moreover, cross-reactivity and interference with pathogens and other substances on the test performance of RATs should be consistently investigated to ensure suitability in the context of SARS-CoV-2 containment
    corecore