15 research outputs found

    Negative phototaxis in the photosymbiotic sea anemone Aiptasia as a potential strategy to protect symbionts from photodamage

    Get PDF
    Photosymbiotic cnidarians generally seek bright environments so that their symbionts can be photosynthetically active. However, excess light may result in a breakdown of symbiosis due to the accumulation of photodamage in symbionts causing symbiont loss (bleaching). It is currently unknown if photosymbiotic cnidarians sense light only to regulate spawning time and to facilitate predation, or whether they also use their light-sensing capacities to protect their symbionts from photodamage. In this study, we examined how the sea anemone Aiptasia changes its behaviour when exposed to excess light. We reveal that Aiptasia polyps, when carrying symbionts, contract their bodies when exposed to high light intensities and subsequently migrate away in a direction perpendicular to the light source. Interestingly, this negative phototaxis was only evident under blue light and absent upon UV, green and red light exposure. Non-symbiotic Aiptasia did not exhibit this light response. Our study demonstrates that photosymbiotic Aiptasia polyps display negative phototactic behaviour in response to blue light, and that they also can perceive its direction, despite lacking specialized eye structures. We postulate that Aiptasia uses blue light, which penetrates seawater efficiently, as a general proxy for sunlight exposure to protect its symbionts from photodamage

    CSC-1: a subunit of the aurora b kinase complex that binds to the survivin-like protein BIR-1 and the incenp-like protein ICP-1

    Get PDF
    The Aurora B kinase complex is a critical regulator of chromosome segregation and cytokinesis. In Caenorhabditis elegans, AIR-2 (Aurora B) function requires ICP-1 (Incenp) and BIR-1 (Survivin). In various systems, Aurora B binds to orthologues of these proteins. Through genetic analysis, we have identified a new subunit of the Aurora B kinase complex, CSC-1. C. elegans embryos depleted of CSC-1, AIR-2, ICP-1, or BIR-1 have identical phenotypes. CSC-1, BIR-1, and ICP-1 are interdependent for their localization, and all are required for AIR-2 localization. In vitro, CSC-1 binds directly to BIR-1. The CSC-1/BIR-1 complex, but not the individual subunits, associates with ICP-1. CSC-1 associates with ICP-1, BIR-1, and AIR-2 in vivo. ICP-1 dramatically stimulates AIR-2 kinase activity. This activity is not stimulated by CSC-1/BIR-1, suggesting that these two subunits function as targeting subunits for AIR-2 kinase

    Photoreceptor Diversification Accompanies the Evolution of Anthozoa

    Get PDF
    Anthozoan corals are an ecologically important group of cnidarians, which power the productivity of reef ecosystems. They are sessile, inhabit shallow, tropical oceans and are highly dependent on sun- and moonlight to regulate sexual reproduction, phototaxis, and photosymbiosis. However, their exposure to high levels of sunlight also imposes an increased risk of UV-induced DNA damage. How have these challenging photic environments influenced photoreceptor evolution and function in these animals? To address this question, we initially screened the cnidarian photoreceptor repertoire for Anthozoa-specific signatures by a broad-scale evolutionary analysis. We compared transcriptomic data of more than 36 cnidarian species and revealed a more diverse photoreceptor repertoire in the anthozoan subphylum than in the subphylum Medusozoa. We classified the three principle opsin classes into distinct subtypes and showed that Anthozoa retained all three classes, which diversified into at least six subtypes. In contrast, in Medusozoa, only one class with a single subtype persists. Similarly, in Anthozoa, we documented three photolyase classes and two cryptochrome (CRY) classes, whereas CRYs are entirely absent in Medusozoa. Interestingly, we also identified one anthozoan CRY class, which exhibited unique tandem duplications of the core functional domains. We next explored the functionality of anthozoan photoreceptors in the model species Exaiptasia diaphana (Aiptasia), which recapitulates key photo-behaviors of corals. We show that the diverse opsin genes are differentially expressed in important life stages common to reef-building corals and Aiptasia and that CRY expression is light regulated. We thereby provide important clues linking coral evolution with photoreceptor diversification

    Faszination Forschung. Korallenforschung

    No full text
    Forschung fasziniert – neue Technik, neue Heilmethoden, oder einfach das Staunen über fremde Planeten und die Wunder der Tiefsee. Was für Köpfe stecken dahinter? Wie kommen WissenschaftlerInnen mit Rückschlägen und Bürokratie klar? Campus-Reporter Nils Birschmann trifft Dr. Annika Guse, die ihre Faszination für Forschung zum Beruf gemacht hat. Der Beitrag erschien in der Sendereihe "Campus-Report" - einer Beitragsreihe, in der über aktuelle Themen aus Forschung und Wissenschaft der Universitäten Heidelberg, Mannheim, Karlsruhe und Freiburg berichtet wird. Zu hören ist "Campus-Report" montags bis freitags jeweils um ca. 19.10h im Programm von Radio Regenbogen (Empfang in Nordbaden: UKW 102,8. In Mittelbaden: 100,4 und in Südbaden: 101,1)

    Symbiose zwischen Korallen und Algen

    No full text
    Unsere Immunabwehr ist sehr komplex. Und wie wunderbar wäre es, mehr über Heilungsmöglichkeiten zu wissen. Darum betreibt die Universität Heidelberg Grundlagenforschung in den Lebenswissenschaften. Was man von Korallen und Algen über unser Immunsystem lernen kann, hat Campus-Reporter Nils Birschmann im Gespräch mit Dr. Annika Guse herausgefunden. Der Beitrag erschien in der Sendereihe "Campus-Report" - einer Beitragsreihe, in der über aktuelle Themen aus Forschung und Wissenschaft der Universitäten Heidelberg, Mannheim, Karlsruhe und Freiburg berichtet wird. Zu hören ist "Campus-Report" montags bis freitags jeweils um ca. 19.10h im Programm von Radio Regenbogen. (Empfang in Nordbaden: UKW 102,8. In Mittelbaden: 100,4 und in Südbaden: 101,1

    Korallen

    No full text
    Forschung ist aufwändig, jede Antwort wirft neue Fragen auf. Deshalb hat die EU-Kommission den Europäischen Forschungsrat ERC gegründet. Mit einem millionenschweren Fond werden Pionier-Leistungen von Nachwuchsforschern unterstützt. Die Universität Heidelberg ist mit gleich fünf bewilligten Anträgen die erfolgreichste deutsche Universität in der aktuellen Förderrunde. Campus-Reporter Nils Birschmann hat Dr. Annika Buse besucht, die fernab vom Meer Korallen erforscht. Der Beitrag erschien in der Sendereihe "Campus-Report" - einer Beitragsreihe, in der über aktuelle Themen aus Forschung und Wissenschaft der Universitäten Heidelberg, Mannheim, Karlsruhe und Freiburg berichtet wird. Zu hören ist "Campus-Report" montags bis freitags jeweils um ca. 19.10h im Programm von Radio Regenbogen. (Empfang in Nordbaden: UKW 102,8. In Mittelbaden: 100,4 und in Südbaden: 101,1

    Negative phototaxis in the photosymbiotic sea anemone Aiptasia as a potential strategy to protect symbionts from photodamage

    No full text
    Abstract Photosymbiotic cnidarians generally seek bright environments so that their symbionts can be photosynthetically active. However, excess light may result in a breakdown of symbiosis due to the accumulation of photodamage in symbionts causing symbiont loss (bleaching). It is currently unknown if photosymbiotic cnidarians sense light only to regulate spawning time and to facilitate predation, or whether they also use their light-sensing capacities to protect their symbionts from photodamage. In this study, we examined how the sea anemone Aiptasia changes its behaviour when exposed to excess light. We reveal that Aiptasia polyps, when carrying symbionts, contract their bodies when exposed to high light intensities and subsequently migrate away in a direction perpendicular to the light source. Interestingly, this negative phototaxis was only evident under blue light and absent upon UV, green and red light exposure. Non-symbiotic Aiptasia did not exhibit this light response. Our study demonstrates that photosymbiotic Aiptasia polyps display negative phototactic behaviour in response to blue light, and that they also can perceive its direction, despite lacking specialized eye structures. We postulate that Aiptasia uses blue light, which penetrates seawater efficiently, as a general proxy for sunlight exposure to protect its symbionts from photodamage

    Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians

    No full text
    Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.publishe
    corecore