48 research outputs found

    Coordination Cluster Nuclearity Decreases with Decreasing Rare Earth Ionic Radius in 1:1 Cr/Ln <i>N</i>ā€‘Butyldiethanolamine Compounds: A Journey across the Lanthanide Series from Cr<sub>4</sub><sup>III</sup>La<sub>4</sub>ā€“Cr<sub>4</sub><sup>III</sup>Tb<sub>4</sub> via Cr<sub>3</sub><sup>III</sup>Dy<sub>3</sub> and Cr<sub>3</sub><sup>III</sup>Ho<sub>3</sub> to Cr<sub>2</sub><sup>III</sup>Er<sub>2</sub>ā€“Cr<sub>2</sub><sup>III</sup>Lu<sub>2</sub>

    No full text
    Reactions of the <i>N</i>-substituted diethanolamine ligand <i>N</i>-<i>n</i>-butyldiethanolamine with chromiumĀ­(II) and lanthanideĀ­(III)/rare earth salts (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) in the presence of coligands give access to three series of isostructural 1:1 3dĀ­(Cr<sup>III</sup>)/4fĀ­(Ln<sup>III</sup>) coordination cluster compounds that can be designated in terms of octanuclear ā€œsquare-in-squareā€ (Ln = Laā€“Tb), hexanuclear ā€œtriangle-in-triangleā€ (Ln = Dy, Ho, Y) and tetranuclear ā€œbutterflyā€ or defect dicubane core (Ln = Erā€“Lu) topologies as revealed by single-crystal X-ray crystallographic analysis. The bulk magnetic properties were also measured. The influences of the various components in the reaction system on the final topology and the role of the ionic radius are discussed

    Coordination Cluster Nuclearity Decreases with Decreasing Rare Earth Ionic Radius in 1:1 Cr/Ln <i>N</i>ā€‘Butyldiethanolamine Compounds: A Journey across the Lanthanide Series from Cr<sub>4</sub><sup>III</sup>La<sub>4</sub>ā€“Cr<sub>4</sub><sup>III</sup>Tb<sub>4</sub> via Cr<sub>3</sub><sup>III</sup>Dy<sub>3</sub> and Cr<sub>3</sub><sup>III</sup>Ho<sub>3</sub> to Cr<sub>2</sub><sup>III</sup>Er<sub>2</sub>ā€“Cr<sub>2</sub><sup>III</sup>Lu<sub>2</sub>

    No full text
    Reactions of the <i>N</i>-substituted diethanolamine ligand <i>N</i>-<i>n</i>-butyldiethanolamine with chromiumĀ­(II) and lanthanideĀ­(III)/rare earth salts (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) in the presence of coligands give access to three series of isostructural 1:1 3dĀ­(Cr<sup>III</sup>)/4fĀ­(Ln<sup>III</sup>) coordination cluster compounds that can be designated in terms of octanuclear ā€œsquare-in-squareā€ (Ln = Laā€“Tb), hexanuclear ā€œtriangle-in-triangleā€ (Ln = Dy, Ho, Y) and tetranuclear ā€œbutterflyā€ or defect dicubane core (Ln = Erā€“Lu) topologies as revealed by single-crystal X-ray crystallographic analysis. The bulk magnetic properties were also measured. The influences of the various components in the reaction system on the final topology and the role of the ionic radius are discussed

    Structures, Magnetic Properties, and Photoluminescence of Dicarboxylate Coordination Polymers of Mn, Co, Ni, Cu Having <i>N</i>ā€‘(4-Pyridylmethyl)-1,8-naphthalimide

    No full text
    Supramolecular interactions of <i>N</i>-(4-pyridylmethyl)-1,8-naphthalimide (<b>L</b>) and flexibility of intervening units of dicarboxylate ligands contribute to formation of different types of coordination polymers such as [Mn<b>L</b><sub>2</sub>(Adp)Ā­(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>Ā·2<i>n</i>H<sub>2</sub>O (<b>1</b>), [Co<b>L</b><sub>2</sub>(Fum)Ā­(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>Ā·2<i>n</i>H<sub>2</sub>O (<b>2</b>), [Co<b>L</b><sub>2</sub>(Adp)Ā­(H<sub>2</sub>O)<sub>2</sub>]<i><sub>n</sub></i>Ā·2<i>n</i>H<sub>2</sub>O (<b>3</b>), [Ni<b>L</b>(Fum)Ā­(H<sub>2</sub>O)<sub>3</sub>]<i><sub>n</sub></i>Ā·H<sub>2</sub>O (<b>4</b>), [Cu<b>L</b><sub>2</sub>(Fum)]<i><sub>n</sub></i>Ā·<i>n</i>H<sub>2</sub>O (<b>5</b>), [Cu<b>L</b>(Mal)]<sub><i>n</i></sub> (<b>6</b>), and [Cu<sub>3</sub><b>L</b><sub>6</sub>(Adp)<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>]<i><sub>n</sub></i> (<b>7</b>) (where Adp = adipate, Fum = fumarate, and Mal = malonate). These coordination polymers are structurally characterized. Coordination polymers <b>1</b> and <b>3</b> are isostructural having three-dimensional (3D) supramolecular layer-like structures. Coordination polymer <b>2</b> forms a two-dimensional (2D) supramolecular network through Cā€“HĀ·Ā·Ā·Ļ€ and OĀ·Ā·Ā·Ļ€ interactions. Coordination polymer <b>4</b> forms H-bonded 3D chainlike supramolecular architecture. Coordination polymer <b>5</b> forms a 3D supramolecular sheet-like structure, whereas coordination polymer <b>6</b> and coordination polymer <b>7</b> forms a 2D lamellar structure through Ļ€Ā·Ā·Ā·Ļ€ and Cā€“HĀ·Ā·Ā·Ļ€ interactions. Manganese coordination polymer <b>1</b> shows weak antiferromagnetic interactions between chains at low temperature and also exhibits single chain magnetic behavior. Coordination polymers <b>2</b> and <b>3</b> show saturation value of magnetic moment at 2 K and 7 T, which are lower than the spin-only CoĀ­(II) ion. Coordination polymer <b>4</b> show spin-only values for NiĀ­(II) ion. The room-temperature Ļ‡<sub>M</sub><i>T</i> value for coordination polymer <b>5</b> is close to the spin-only value for two CuĀ­(II) ions. With lowering of the temperature, the Ļ‡<sub>M</sub><i>T</i> value remains constant to 35 K, from where the value begins to decrease to a minimum at 2 K. For copper coordination polymer <b>6</b> value of Ļ‡<sub>M</sub><i>T</i> smoothly decreases with lowering of the temperature to attain a quasi plateau between 80 K and 35 K, and it further sharply increases at 2 K. Coordination polymer <b>7</b> shows spin-only CuĀ­(II) ion. These coordination polymers in solid state show quenching of fluorescence emission of ligand <b>L</b>, as well as a shift of emission toward a shorter wavelength

    Butterfly M<sub>2</sub><sup>III</sup>Er<sub>2</sub> (M<sup>III</sup> = Fe and Al) SMMs: Synthesis, Characterization, and Magnetic Properties

    No full text
    The reaction of <i>N</i>-(2-pyridylmethyl)Ā­iminodiethanol (H<sub>2</sub>L, pmide), FeCl<sub>2</sub>Ā·4H<sub>2</sub>O or AlCl<sub>3</sub>Ā·6H<sub>2</sub>O with ErCl<sub>3</sub>Ā·6H<sub>2</sub>O and <i>p</i>-Me-PhCO<sub>2</sub>H in the ratio of 2:1:1:4 in the presence of Et<sub>3</sub>N in MeOH and MeCN yielded compounds [Fe<sub>2</sub>Er<sub>2</sub>(Ī¼<sub>3</sub>-OH)<sub>2</sub>(pmide)<sub>2</sub>(<i>p</i>-Me-PhCO<sub>2</sub>)<sub>6</sub>]Ā·2MeCN (<b>1</b>) and [Al<sub>2</sub>Er<sub>2</sub>(Ī¼<sub>3</sub>-OH)<sub>2</sub>(pmide)<sub>2</sub>(<i>p</i>-Me-PhCO<sub>2</sub>)<sub>6</sub>]Ā·2MeCN (<b>2</b>). These two complexes are isostructural, possessing a planar butterfly motif with the Er<sup>III</sup> ions in the wingtip positions. Both compounds show single molecule magnet (SMM) behavior. For the [Al<sub>2</sub>Er<sub>2</sub>] compound, the slow relaxation of the magnetization under zero applied direct current (dc) field does not show maxima, but the relaxation processes could be analyzed using an applied dc field of 1000 Oe. In-depth alternating current measurements under different dc fields on the [Fe<sub>2</sub>Er<sub>2</sub>] compound reveals that the Feā€“Fe and Feā€“Er interactions speed up the relaxation and decrease the energy barrier height of the SMM in comparison with the [Al<sub>2</sub>Er<sub>2</sub>] case

    Butterfly M<sub>2</sub><sup>III</sup>Er<sub>2</sub> (M<sup>III</sup> = Fe and Al) SMMs: Synthesis, Characterization, and Magnetic Properties

    No full text
    The reaction of <i>N</i>-(2-pyridylmethyl)Ā­iminodiethanol (H<sub>2</sub>L, pmide), FeCl<sub>2</sub>Ā·4H<sub>2</sub>O or AlCl<sub>3</sub>Ā·6H<sub>2</sub>O with ErCl<sub>3</sub>Ā·6H<sub>2</sub>O and <i>p</i>-Me-PhCO<sub>2</sub>H in the ratio of 2:1:1:4 in the presence of Et<sub>3</sub>N in MeOH and MeCN yielded compounds [Fe<sub>2</sub>Er<sub>2</sub>(Ī¼<sub>3</sub>-OH)<sub>2</sub>(pmide)<sub>2</sub>(<i>p</i>-Me-PhCO<sub>2</sub>)<sub>6</sub>]Ā·2MeCN (<b>1</b>) and [Al<sub>2</sub>Er<sub>2</sub>(Ī¼<sub>3</sub>-OH)<sub>2</sub>(pmide)<sub>2</sub>(<i>p</i>-Me-PhCO<sub>2</sub>)<sub>6</sub>]Ā·2MeCN (<b>2</b>). These two complexes are isostructural, possessing a planar butterfly motif with the Er<sup>III</sup> ions in the wingtip positions. Both compounds show single molecule magnet (SMM) behavior. For the [Al<sub>2</sub>Er<sub>2</sub>] compound, the slow relaxation of the magnetization under zero applied direct current (dc) field does not show maxima, but the relaxation processes could be analyzed using an applied dc field of 1000 Oe. In-depth alternating current measurements under different dc fields on the [Fe<sub>2</sub>Er<sub>2</sub>] compound reveals that the Feā€“Fe and Feā€“Er interactions speed up the relaxation and decrease the energy barrier height of the SMM in comparison with the [Al<sub>2</sub>Er<sub>2</sub>] case

    Butterfly M<sub>2</sub><sup>III</sup>Er<sub>2</sub> (M<sup>III</sup> = Fe and Al) SMMs: Synthesis, Characterization, and Magnetic Properties

    No full text
    The reaction of <i>N</i>-(2-pyridylmethyl)Ā­iminodiethanol (H<sub>2</sub>L, pmide), FeCl<sub>2</sub>Ā·4H<sub>2</sub>O or AlCl<sub>3</sub>Ā·6H<sub>2</sub>O with ErCl<sub>3</sub>Ā·6H<sub>2</sub>O and <i>p</i>-Me-PhCO<sub>2</sub>H in the ratio of 2:1:1:4 in the presence of Et<sub>3</sub>N in MeOH and MeCN yielded compounds [Fe<sub>2</sub>Er<sub>2</sub>(Ī¼<sub>3</sub>-OH)<sub>2</sub>(pmide)<sub>2</sub>(<i>p</i>-Me-PhCO<sub>2</sub>)<sub>6</sub>]Ā·2MeCN (<b>1</b>) and [Al<sub>2</sub>Er<sub>2</sub>(Ī¼<sub>3</sub>-OH)<sub>2</sub>(pmide)<sub>2</sub>(<i>p</i>-Me-PhCO<sub>2</sub>)<sub>6</sub>]Ā·2MeCN (<b>2</b>). These two complexes are isostructural, possessing a planar butterfly motif with the Er<sup>III</sup> ions in the wingtip positions. Both compounds show single molecule magnet (SMM) behavior. For the [Al<sub>2</sub>Er<sub>2</sub>] compound, the slow relaxation of the magnetization under zero applied direct current (dc) field does not show maxima, but the relaxation processes could be analyzed using an applied dc field of 1000 Oe. In-depth alternating current measurements under different dc fields on the [Fe<sub>2</sub>Er<sub>2</sub>] compound reveals that the Feā€“Fe and Feā€“Er interactions speed up the relaxation and decrease the energy barrier height of the SMM in comparison with the [Al<sub>2</sub>Er<sub>2</sub>] case

    Structures, Magnetic Properties, and Photoluminescence of Dicarboxylate Coordination Polymers of Mn, Co, Ni, Cu Having <i>N</i>ā€‘(4-Pyridylmethyl)-1,8-naphthalimide

    No full text
    Supramolecular interactions of <i>N</i>-(4-pyridylmethyl)-1,8-naphthalimide (<b>L</b>) and flexibility of intervening units of dicarboxylate ligands contribute to formation of different types of coordination polymers such as [Mn<b>L</b><sub>2</sub>(Adp)Ā­(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>Ā·2<i>n</i>H<sub>2</sub>O (<b>1</b>), [Co<b>L</b><sub>2</sub>(Fum)Ā­(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>Ā·2<i>n</i>H<sub>2</sub>O (<b>2</b>), [Co<b>L</b><sub>2</sub>(Adp)Ā­(H<sub>2</sub>O)<sub>2</sub>]<i><sub>n</sub></i>Ā·2<i>n</i>H<sub>2</sub>O (<b>3</b>), [Ni<b>L</b>(Fum)Ā­(H<sub>2</sub>O)<sub>3</sub>]<i><sub>n</sub></i>Ā·H<sub>2</sub>O (<b>4</b>), [Cu<b>L</b><sub>2</sub>(Fum)]<i><sub>n</sub></i>Ā·<i>n</i>H<sub>2</sub>O (<b>5</b>), [Cu<b>L</b>(Mal)]<sub><i>n</i></sub> (<b>6</b>), and [Cu<sub>3</sub><b>L</b><sub>6</sub>(Adp)<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>]<i><sub>n</sub></i> (<b>7</b>) (where Adp = adipate, Fum = fumarate, and Mal = malonate). These coordination polymers are structurally characterized. Coordination polymers <b>1</b> and <b>3</b> are isostructural having three-dimensional (3D) supramolecular layer-like structures. Coordination polymer <b>2</b> forms a two-dimensional (2D) supramolecular network through Cā€“HĀ·Ā·Ā·Ļ€ and OĀ·Ā·Ā·Ļ€ interactions. Coordination polymer <b>4</b> forms H-bonded 3D chainlike supramolecular architecture. Coordination polymer <b>5</b> forms a 3D supramolecular sheet-like structure, whereas coordination polymer <b>6</b> and coordination polymer <b>7</b> forms a 2D lamellar structure through Ļ€Ā·Ā·Ā·Ļ€ and Cā€“HĀ·Ā·Ā·Ļ€ interactions. Manganese coordination polymer <b>1</b> shows weak antiferromagnetic interactions between chains at low temperature and also exhibits single chain magnetic behavior. Coordination polymers <b>2</b> and <b>3</b> show saturation value of magnetic moment at 2 K and 7 T, which are lower than the spin-only CoĀ­(II) ion. Coordination polymer <b>4</b> show spin-only values for NiĀ­(II) ion. The room-temperature Ļ‡<sub>M</sub><i>T</i> value for coordination polymer <b>5</b> is close to the spin-only value for two CuĀ­(II) ions. With lowering of the temperature, the Ļ‡<sub>M</sub><i>T</i> value remains constant to 35 K, from where the value begins to decrease to a minimum at 2 K. For copper coordination polymer <b>6</b> value of Ļ‡<sub>M</sub><i>T</i> smoothly decreases with lowering of the temperature to attain a quasi plateau between 80 K and 35 K, and it further sharply increases at 2 K. Coordination polymer <b>7</b> shows spin-only CuĀ­(II) ion. These coordination polymers in solid state show quenching of fluorescence emission of ligand <b>L</b>, as well as a shift of emission toward a shorter wavelength

    Molecular Iron(III) Phosphonates: Synthesis, Structure, Magnetism, and MoĢˆssbauer Studies

    No full text
    The reaction of FeĀ­(ClO<sub>4</sub>)<sub>2</sub>Ā·6H<sub>2</sub>O with <i>t</i>-BuPO<sub>3</sub>H<sub>2</sub> or Cl<sub>3</sub>CPO<sub>3</sub>H<sub>2</sub> in the presence of an ancillary pyrazole phenolate as a coligand, H<sub>2</sub>phpzH [H<sub>2</sub>phpzH = 3(5)-(2-hydroxyphenyl)Ā­pyrazole], afforded tetra- and pentanuclear FeĀ­(III) phosphonate complexes [Fe<sub>4</sub>(<i>t</i>-BuPO<sub>3</sub>)<sub>4</sub>(HphpzH)<sub>4</sub>]Ā·5CH<sub>3</sub>CNĀ·5CH<sub>2</sub>Cl<sub>2</sub> (<b>1</b>) and [HNEt<sub>3</sub>]<sub>2</sub>[Fe<sub>5</sub>(Ī¼<sub>3</sub>-O)Ā­(Ī¼-OH)<sub>2</sub> (Cl<sub>3</sub>CPO<sub>3</sub>)<sub>3</sub>Ā­(HphpzH)<sub>5</sub>Ā­(Ī¼-phpzH]Ā·3CH<sub>3</sub>CNĀ·2H<sub>2</sub>O (<b>2</b>). Single-crystal X-ray structural analysis reveals that <b>1</b> possesses a cubic double-4-ring (D4R) core similar to what is found in zeolites. The molecular structure of <b>2</b> reveals it to be pentanuclear. It crystallizes in the chiral <i>P</i>1 space group. Magnetic studies on <b>1</b> and <b>2</b> have also been carried out, which reveal that the bridging phosphonate ligands mediate weak antiferromagnetic interactions between the FeĀ­(III) ions. Magnetization dynamics of <b>1</b> and <b>2</b> have been corroborated by a MoĢˆssbauer spectroscopy analysis

    An Undecanuclear Ferrimagnetic Cu<sub>9</sub>Dy<sub>2</sub> Single Molecule Magnet Achieved through Ligand Fine-Tuning

    No full text
    We describe the concept of increasing the nuclearity of a previously reported high-spin Cu<sub>5</sub>Gd<sub>2</sub> core using a ā€œfine-tuningā€ ligand approach. Thus, two Cu<sub>9</sub>Ln<sub>2</sub> coordination clusters, with Ln = Dy (<b>1</b>) and Gd (<b>2</b>), were synthesized with the Gd compound having a ground spin state of <sup>17</sup>/<sub>2</sub> and the Dy analogue showing single-molecule-magnet behavior in zero field

    Spontaneous Resolution in Homochiral Helical [Ln(nic)<sub>2</sub>(Hnic)(NO<sub>3</sub>)] Coordination Polymers Constructed from a Rigid Non-chiral Organic Ligand

    No full text
    A series of homochiral lanthanide nicotinate helical coordination polymers [Ln<sup>III</sup>(nic)<sub>2</sub>(Hnic)Ā­(NO<sub>3</sub>)] (Ln = Eu (<b>1</b>), Gd (<b>2</b>), Tb (<b>3</b>); Hnic = nicotinic acid) has been solvothermally synthesized using nicotinic acid. In the resulting chains, chirality is not induced by a chiral agent but appears spontaneously <i>via</i> intrachain hydrogen bondings. Compounds <b>2</b> and <b>3</b> were magnetically characterized, and luminescent properties were observed for compounds <b>1</b> and <b>3</b>
    corecore