2 research outputs found

    Dose-Dependent Immunomodulation of Human Dendritic Cells by the Probiotic Lactobacillus rhamnosus Lcr35

    Get PDF
    The response of the immune system to probiotics remains controversial. Some strains modulate the cytokine production of dendritic cells (DCs) in vitro and induce a regulatory response, while others induce conversely a pro-inflammatory response. These strain-dependent effects are thought to be linked to specific interactions between bacteria and pattern recognition receptors. We investigated the effects of a well characterized probiotic strain, Lactobacillus rhamnosus Lcr35, on human monocyte-derived immature DCs, using a wide range of bacterial concentrations (multiplicity of infection, MOI, from 0.01 to 100). DNA microarray and qRT-PCR analysis showed that the probiotic induced a large-scale change in gene expression (nearly 1,700 modulated genes, with 3-fold changes), but only with high doses (MOI, 100). The upregulated genes were mainly involved in immune response and identified a molecular signature of inflammation according to the model of Torri. Flow cytometry analysis also revealed a dose-dependent maturation of the DC membrane phenotype, until DCs reached a semi-mature state, with an upregulation of the membrane expression of CD86, CD83, HLA-DR and TLR4, associated with a down-regulation of DC-SIGN, MR and CD14. Measurement of the DC-secreted cytokines showed that Lcr35 induced a strong dose-dependent increase of the pro-Th1/Th17 cytokine levels (TNFα, IL-1β, IL-12p70, IL-12p40 and IL-23), but only a low increase in IL-10 concentration. The probiotic L. rhamnosus Lcr35 therefore induce a dose-dependent immunomodulation of human DCs leading, at high doses, to the semi-maturation of the cells and to a strong pro-inflammatory effect. These results contribute to a fuller understanding of the mechanism of action of this probiotic, and thus of its potential clinical indications in the treatment of either infectious or IgE-dependent allergic diseases

    Slight Pro-Inflammatory Immunomodulation Properties of Dendritic Cells byGardnerella vaginalis: The “Invisible Man” of Bacterial Vaginosis?

    Get PDF
    The authors thank the CICS of Clermont-Ferrand and are very grateful to Christelle Blavignac, Claire Szczepaniak, and Lorraine Novais Gameiro for their generous cooperation. This work was partially supported by a grant of the regional council of AuvergneBacterial vaginosis (BV), the most common genital infection in reproductive-aged women, is associated with increased risk of sexually transmitted infections. Its etiology remains unclear, especially the role of Gardnerella (G.) vaginalis, an anaerobic bacterium characteristic of the BV-alteration of the vaginal ecosystem. In the genital mucosa, dendritic cells (DCs) sense bacteria of the microenvironment via receptors and then orchestrate the immune response by induction of different T cell subtypes. We investigated the interactions between G. vaginalis and human monocyte-derived DCs using a wide range of bacterial concentrations (multiplicity of infection from 0.01 to 100), and the effects of this pathogen on PHA-induced lymphocyte proliferation. As observed by electron microscopy and cytometry, G. vaginalis reduced the internalization ability of DCs by forming extracellular clusters and induced neither DC maturation, nor DC secretion of cytokines, except at the highest dose with a very early DC maturation state. The same profile was observed on lymphocytes with significant increases of proliferation and cytokine secretion only at the highest bacterial concentration. Our findings indicate that G. vaginalis possesses slight immune-stimulating activities against DCs and T cells, reflecting thus a defective inflammatory response and giving rise to the atypical, non-or low-grade, inflammatory clinical disease profil
    corecore