30 research outputs found

    TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Get PDF
    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage (BAL) fluid cytology and biochemistry; (3) blood cytology; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. In addition, at one plant, cardiac arrhythmias and heart rate variability (HRV) were evaluated in a rat model of myocardial infarction. Statistical analyses included analyses of variance (ANOVA) to determine differences between exposed and control animals in response to different scenario/plant combinations; univariate analyses to link individual scenario components to responses; and multivariate analyses (Random Forest analyses) to evaluate component effects in a multipollutant setting. Results from the power plant studies indicated some biological responses to some plant/scenario combinations. A number of significant breathing pattern changes were observed; however, significant clinical changes such as specific irritant effects were not readily apparent, and effects tended to be isolated changes in certain respiratory parameters. Some individual exposure scenario components appeared to be more strongly and consistently related to respiratory parameter changes; however, the specific scenario investigated remained a better predictor of response than individual components of that scenario. Bronchoalveolar lavage indicated some changes in cellularity of BAL fluid in response to the POS and PONS scenarios; these responses were considered toxicologically mild in magnitude. No changes in blood cytology were observed at any plant or scenario. Lung oxidative stress was increased with the POS scenario at one plant, and cardiac oxidative stress was increased with the PONS scenario also at one plant, suggesting limited oxidative stress in response to power plant emissions with added atmospheric constituents. There were some mild histological findings in lung tissue in response to the P and PONS scenarios. Finally, the MI model experiments indicated that premature ventricular beat frequency was increased at the plant studied, while no changes in heart rate, HRV, or electrocardiographic intervals were observed. Overall, the TERESA results should be interpreted as indicating toxicologically mild adverse responses to some scenarios. The varied responses among the three plants indicate heterogeneity in emissions. Ongoing studies using the TERESA approach to evaluate the toxicity of traffic-related pollution will yield valuable data for comparative toxicity assessment and will give us a better understanding of the contribution of different sources to the morbidity and mortality associated with exposure to air pollution

    PM2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions

    Get PDF
    Abstract Background We tested the hypothesis that cardiovascular responses to PM2.5 exposure will be enhanced in hypertensive rats and linked to specific carbonaceous pollutants in an urban industrial setting. Methods Spontaneously hypertensive rats were exposed by inhalation to concentrated PM2.5 in an industrial area of Dearborn, Michigan, for four consecutive summer days. Blood pressure (BP), heart rate (HR) and HR variability (HRV) metrics (SDNN, RMSSD) were assessed by radiotelemetry and compared to 1 h- and 8 h-averaged fluctuations in PM2.5 composition, with a focus on elemental and organic carbon (EC and OC, respectively), and temperature-resolved subfractions (EC1-EC5, PC (pyrolized carbon), and OC1-OC4), as well as other major and minor PM components. Results Mean HR and BP were increased, while HRV was decreased over 4 days of exposure. Using 1 h averages, EC (1 μg/m3 increase) was associated with increased HR of 11-32 bpm (4-11% increase), 1.2-1.5 ms (22-27%) decreases in SDNN, 3-14 mmHg (1.5-8%) increases in systolic BP, and 5-12 mmHg (4-9%) increases in diastolic BP. By comparison, associations with OC were negligible. Using 8 h averages, EC subfractions were linked with increased heart rate (EC1: 13 bpm; EC2, EC3, PC:  > EC2 > EC3, EC4, PC), but with decreased RMSSD (EC2, EC5 > EC3, EC4). Minimal effects were associated with OC and OC1. Associations between carbon subfractions and BP were negligible. Associations with non-carbonaceous components and trace elements were generally non-significant or of negligible effect size. Conclusions These findings are the first to describe associations between acute cardiovascular responses and thermally resolved carbon subfractions. We report that cardiovascular responses to PM2.5 carbonaceous materials appear to be driven by EC and its EC1 fraction.http://deepblue.lib.umich.edu/bitstream/2027.42/115867/1/12989_2014_Article_306.pd

    books

    No full text

    Evaluation of community response to wind turbine-related noise in Western New York State

    No full text
    As the boundaries of harvesting wind energy expand to meet the ever-increasing societal energy demands, the number and size of wind turbines being constructed rises. As part of a larger project to monitor sound in an operating wind park in western New York State, a cross-sectional survey was conducted among individuals living in and around the wind park to characterize the perception, level of annoyance, and self-reported health effects of residents. We conducted the study in a 126 MW wind park consisting of 84 turbines spanning approximately 19 square miles of farmland. Short-term outdoor and indoor sound level measurements were also performed at each dwelling in which a questionnaire was administered. To our knowledge, this study is the first to collect sound measurements at individual residences. There was no apparent exposure-response relationship between an individual′s level of annoyance and the short duration sound measurements collected at the time of the survey. There was a correlation between an individual′s concern regarding health effects and the prevalence of sleep disturbance and stress among the study population. The siting process is unique to each community with varying degrees of success. Additional sound level measurements inside and outside homes in larger cohorts in concert with detailed questionnaires would be useful in verifying those exposure-response relationships found in studies using calculated sound level data. Additional research should include a detailed investigation of sleep patterns and possible disturbance in those living in and near operating wind turbine projects

    Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA): Introduction and overview

    No full text
    Determining the health impacts of sources and components of fine particulate matter (PM2.5) is an important scientific goal. PM2.5 is a complex mixture of inorganic and organic constituents that are likely to differ in their potential to cause adverse health outcomes. The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study focused on two PM sourcescoal-fired power plants and mobile sourcesand sought to investigate the toxicological effects of exposure to emissions from these sources. The set of papers published here document the power plant experiments. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. TERESA involved withdrawal of emissions from the stacks of three coal-fired power plants in the United States. The emissions were aged and atmospherically transformed in a mobile laboratory simulating downwind power plant plume processing. Toxicological

    Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    No full text
    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended
    corecore