6 research outputs found

    Calcium Looping for Thermochemical Storage: Assessment of Intrinsic Reaction Rate and Estimate of Kinetic/Transport Parameters for Synthetic CaO/Mayenite Particles from TGA Data

    Get PDF
    Mayenite-supported CaO represents an affordable and safetycompliant candidate material for thermochemical storage processes. We here analyze the thermogravimetric analysis (TGA) performance of synthetic CaO/mayenite micrometric powder under carbonatation/calcination looping and develop a model to interpret and analyze the experimental results. In the experimental campaign, calcination is run at 900 degrees C, while the carbonatation temperature is varied between 600 and 800 degrees C. For the carbonatation reaction, a generalized shrinking core model assuming a thermodynamically consistent first-order kinetic and a conversion-dependent diffusivity of CO2 inside the porous CaCO3 layer is validated through TGA carbonatation tests conducted with CO2/N-2 mixtures at different compositions. Interestingly, the kinetic constant of this reaction is found to be relatively insensitive to the temperature in the interval considered. In contrast, diffusion-limited regimes are never found for the calcination reaction so that this phase of the cycle can be predicted based on a single kinetic constant of the heterogeneous reaction. This constant is found to follow the typical Arrhenius-type dependence on temperature. Sizably different kinetic and transport parameters are obtained in the first carbonation performed on virgin CaO/mayenite particles with respect to those associated with subsequent cycles. When different parameters are afforded for the first and following cycles, the shrinking core model proposed closely predicts the TGA data over five CaO/CaCO3 cycles. The results found constitute an essential preliminary piece of information for designing equipment geometry and operating conditions of industrial-scale reactors. In this respect, knowledge of the parameters defining the intrinsic reaction rates and diffusive transport is essential in defining the optimal conversion of the material associated with minimal looping time

    Fattori limitanti nella elettrogenerazione catodica di radicali ossidrile

    No full text
    Sono presi in esame i fattori limitanti nel processo di produzione di acqua ossigenata per riduzione catodica dell’ossigeno nel caso dell’elettrodo di grafite e dell’elettrodo composito di grafite a diffusione di gas e viene proposto un modello che rappresenti i due sistemi in esame. Quest’ultimo viene utilizzato per verificare l’effetto delle variabili di processo sulle prestazioni del sistema ovvero la produzione specifica netta di acqua ossigenata con un determinato rendimento di corrente. Il modello stesso potrà consentire di valutare anche le condizioni ottimali per la produzione del radicale ossidrile, verificando anche il processo di rigenerazione per riduzione degli ioni ferrosi ossidati a ioni ferrici nel corso della reazione di Fenton
    corecore