223 research outputs found

    Neuroinflammation in Alzheimer's disease wanes with age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation is a prominent feature in Alzheimer's disease (AD). It has been proposed that aging has an effect on the function of inflammation in the brain, thereby contributing to the development of age-related diseases like AD. However, the age-dependent relationship between inflammation and clinical phenotype of AD has never been investigated.</p> <p>Methods</p> <p>In this study we have analysed features of the neuroinflammatory response in clinically and pathologically confirmed AD and control cases in relation to age (range 52-97 years). The mid-temporal cortex of 19 controls and 19 AD cases was assessed for the occurrence of microglia and astrocytes by immunohistochemistry using antibodies directed against CD68 (KP1), HLA class II (CR3/43) and glial fibrillary acidic protein (GFAP).</p> <p>Results</p> <p>By measuring the area density of immunoreactivity we found significantly more microglia and astrocytes in AD cases younger than 80 years compared to older AD patients. In addition, the presence of KP1, CR3/43 and GFAP decreases significantly with increasing age in AD.</p> <p>Conclusion</p> <p>Our data suggest that the association between neuroinflammation and AD is stronger in relatively young patients than in the oldest patients. This age-dependent relationship between inflammation and clinical phenotype of AD has implications for the interpretation of biomarkers and treatment of the disease.</p

    Maximal COX-2 and ppRb expression in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia in Alzheimer's disease

    Get PDF
    Neuronal expression of cyclooxygenase-2 (COX-2) and cell cycle proteins is suggested to contribute to neurodegeneration during Alzheimer's disease (AD). The stimulus that induces COX-2 and cell cycle protein expression in AD is still elusive. Activated glia cells are shown to secrete substances that can induce expression of COX-2 and cell cycle proteins in vitro. Using post mortem brain tissue we have investigated whether activation of microglia and astrocytes in AD brain can be correlated with the expression of COX-2 and phosphorylated retinoblastoma protein (ppRb). The highest levels of neuronal COX-2 and ppRb immunoreactivity are observed in the first stages of AD pathology (Braak 0–II, Braak A). No significant difference in COX-2 or ppRb neuronal immunoreactivity is observed between Braak stage 0 and later Braak stages for neurofibrillary changes or amyloid plaques. The mean number of COX-2 or ppRb immunoreactive neurons is significantly decreased in Braak stage C compared to Braak stage A for amyloid deposits. Immunoreactivity for glial markers KP1, CR3/43 and GFAP appears in the later Braak stages and is significantly increased in Braak stage V-VI compared to Braak stage 0 for neurofibrillary changes. In addition, a significant negative correlation is observed between the presence of KP1, CR3/43 and GFAP immunoreactivity and the presence of neuronal immunoreactivity for COX-2 and ppRb. These data show that maximal COX-2 and ppRb immunoreactivity in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia. In contrast to in vitro studies, post mortem data do not support a causal relation between the activation of microglia and astrocytes and the expression of neuronal COX-2 and ppRb in the pathological cascade of AD

    Genetic screening in early-onset Alzheimer's disease identified three novel presenilin mutations

    Get PDF
    Mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP) are major genetic causes of early-onset Alzheimer's disease (EOAD). Clinical heterogeneity is frequently observed in patients with PSEN1 and PSEN2 mutations. Using whole exome sequencing, we screened a Dutch cohort of 68 patients with EOAD for rare variants in Mendelian Alzheimer's disease, frontotemporal dementia, and prion disease genes. We identified 3 PSEN1 and 2 PSEN2 variants. Three variants, 1 in PSEN1 (p.H21Profs*2) and both PSEN2 (p.A415S and p.M174I), were novel and absent in control exomes. These novel variants can be classified as probable pathogenic, except for PSEN1 (p.H21Profs*2) in which the pathogenicity is uncertain. The initial clinical symptoms between mutation carriers varied from behavioral problems to memory impairment. Our findings extend the mutation spectrum of EOAD and underline the clinical heterogeneity among PSEN1 and PSEN2 mutation carriers. Screening for Alzheimer's disease–causing genes is indicated in presenile dementia with an overlapping clinical diagnosis

    Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present study was to investigate microglia activation over time following traumatic brain injury (TBI) and to relate these findings to glutamate release.</p> <p>Procedures</p> <p>Sequential dynamic <it>(R)</it>-[<sup>11</sup>C]PK11195 PET scans were performed in rats 24 hours before (baseline), and one and ten days after TBI using controlled cortical impact, or a sham procedure. Extracellular fluid (ECF) glutamate concentrations were measured using cerebral microdialysis. Brains were processed for histopathology and (immuno)-histochemistry.</p> <p>Results</p> <p>Ten days after TBI, <it>(R)</it>-[<sup>11</sup>C]PK11195 binding was significantly increased in TBI rats compared with both baseline values and sham controls (p < 0.05). ECF glutamate values were increased immediately after TBI (27.6 ± 14.0 μmol·L<sup>-1</sup>) as compared with the sham procedure (6.4 ± 3.6 μmol·L<sup>-1</sup>). Significant differences were found between TBI and sham for ED-1, OX-6, GFAP, Perl's, and Fluoro-Jade B.</p> <p>Conclusions</p> <p>Increased cerebral uptake of <it>(R)</it>-[<sup>11</sup>C]PK11195 ten days after TBI points to prolonged and ongoing activation of microglia. This activation followed a significant acute posttraumatic increase in ECF glutamate levels.</p

    Severe CTE and TDP-43 pathology in a former professional soccer player with dementia: a clinicopathological case report and review of the literature

    Get PDF
    In the last decades, numerous post-mortem case series have documented chronic traumatic encephalopathy (CTE) in former contact-sport athletes, though reports of CTE pathology in former soccer players are scarce. This study presents a clinicopathological case of a former professional soccer player with young-onset dementia. The patient experienced early onset progressive cognitive decline and developed dementia in his mid-50 s, after playing soccer for 12 years at a professional level. While the clinical picture mimicked Alzheimer's disease, amyloid PET imaging did not provide evidence of elevated beta-amyloid plaque density. After he died in his mid-60 s, brain autopsy showed severe phosphorylated tau (p-tau) abnormalities fulfilling the neuropathological criteria for high-stage CTE, as well as astrocytic and oligodendroglial tau pathology in terms of tufted astrocytes, thorn-shaped astrocytes, and coiled bodies. Additionally, there were TAR DNA-binding protein 43 (TDP-43) positive cytoplasmic inclusions in the frontal lobe and hippocampus, and Amyloid Precursor Protein (APP) positivity in the axons of the white matter. A systematic review of the literature revealed only 13 other soccer players with postmortem diagnosis of CTE. Our report illustrates the complex clinicopathological correlation of CTE and the need for disease-specific biomarkers

    Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology

    Get PDF
    Background Alzheimer’s disease (AD) is the most common neurodegenerative disease. In addition to the occurrence of amyloid deposits and widespread tau pathology, AD is associated with a neuroinflammatory response characterized by the activation of microglia and astrocytes. Protein kinase 2 (CK2, former casein kinase II) is involved in a wide variety of cellular processes. Previous studies on CK2 in AD showed controversial results, and the involvement of CK2 in neuroinflammation in AD remains elusive. Methods In this study, we used immunohistochemical and immunofluorescent staining methods to investigate the localization of CK2 in the hippocampus and temporal cortex of patients with AD and non-demented controls. We compared protein levels with Western blotting analysis, and we investigated CK2 activity in human U373 astrocytoma cells and human primary adult astrocytes stimulated with IL-1β or TNF-α. Results We report increased levels of CK2 in the hippocampus and temporal cortex of AD patients compared to non-demented controls. Immunohistochemical analysis shows CK2 immunoreactivity in astrocytes in AD and control cases. In AD, the presence of CK2 immunoreactive astrocytes is increased. CK2 immunopositive astrocytes are associated with amyloid deposits, suggesting an involvement of CK2 in the neuroinflammatory response. In U373 cells and human primary astrocytes, the selective CK2 inhibitor CX-4945 shows a dose-dependent reduction of the IL-1β or TNF-α induced MCP-1 and IL-6 secretion. Conclusions This data suggests that CK2 in astrocytes is involved in the neuroinflammatory response in AD. The reduction in pro-inflammatory cytokine secretion by human astrocytes using the selective CK2 inhibitor CX-4945 indicates that CK2 could be a potential target to modulate neuroinflammation in AD

    Amyloid-β, p-tau, and reactive microglia load are correlates of MRI cortical atrophy in Alzheimer's disease

    Get PDF
    INTRODUCTION: The aim of this study was to identify the histopathological correlates of MRI cortical atrophy in (a)typical Alzheimer’s disease (AD) donors. METHODS: 19 AD and 10 control donors underwent post-mortem in-situ 3T-3DT1-MRI, from which cortical thickness was calculated. Upon subsequent autopsy, 21 cortical brain regions were selected and immunostained for amyloid-beta, phosphorylated-tau, and reactive microglia. MRI-pathology associations were assessed using linear mixed models. Post-mortem MRI was compared to ante-mortem MRI when available. RESULTS: Higher amyloid-beta load weakly correlated with a higher cortical thickness globally. Phosphorylated-tau strongly correlated with cortical atrophy in temporo-frontal regions. Reactive microglia load strongly correlated with cortical atrophy in the parietal region. Post-mortem scans showed high concordance with ante-mortem scans acquired <1 year before death. DISCUSSION: Distinct histopathological markers differently correlate with cortical atrophy, highlighting their different roles in the neurodegenerative process. This study contributes in understanding the pathological underpinnings of MRI atrophy patterns

    Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA

    Get PDF
    The current classification of human sporadic prion diseases recognizes six major phenotypic subtypes with distinctive clinicopathological features, which largely correlate at the molecular level with the genotype at the polymorphic codon 129 (methionine, M, or valine, V) in the prion protein gene and with the size of the protease-resistant core of the abnormal prion protein, PrP(Sc) (i.e. type 1 migrating at 21 kDa and type 2 at 19 kDa). We previously demonstrated that PrP(Sc) typing by Western blotting is a reliable means of strain typing and disease classification. Limitations of this approach, however, particularly in the interlaboratory setting, are the association of PrP(Sc) types 1 or 2 with more than one clinicopathological phenotype, which precludes definitive case classification if not supported by further analysis, and the difficulty of fully recognizing cases with mixed phenotypic features. In this study, we tested the inter-rater reliability of disease classification based only on histopathological criteria. Slides from 21 cases covering the whole phenotypic spectrum of human sporadic prion diseases, and also including two cases of variant Creutzfeldt-Jakob disease (CJD), were distributed blindly to 13 assessors for classification according to given instructions. The results showed good-to-excellent agreement between assessors in the classification of cases. In particular, there was full agreement (100 %) for the two most common sporadic CJD subtypes and variant CJD, and very high concordance in general for all pure phenotypes and the most common subtype with mixed phenotypic features. The present data fully support the basis for the current classification of sporadic human prion diseases and indicate that, besides molecular PrP(Sc) typing, histopathological analysis permits reliable disease classification with high interlaboratory accuracy
    corecore