22 research outputs found

    Cardioprotective efficacy depends critically on pharmacological dose, duration of ischaemia, health status of animals and choice of anaesthetic regimen: a case study with folic acid

    No full text
    Acute, high-dose folic acid (FA) administration has recently been shown to possess unprecedented effective cardioprotection against ischaemia/reperfusion (I/R) injury. Here we explore the translation potential of FA as treatment modality for cardiac I/R. Dependency of FA protection on dose, ischaemia duration, and eNOS was examined in an isolated mouse heart I/R model, whereas dependency on animal health status and anaesthesia was examined in an in vivo rat model of regional cardiac I/R. 50 μM FA provided maximal reduction (by 95%) of I/R-induced cell death following 25 min ischaemia in isolated wild-type hearts, with protection associated with increased coupled eNOS protein. No protection was observed with 35 min I or in eNOS(-/-) hearts. Acute intravenous administration of FA during a 25 min ischaemic period reduced infarct size by 45% in in vivo pentobarbital-anaesthetised young, healthy rats. FA did not reduce infarct size in aged or pre-diabetic rats, although it did preserve hemodynamics in the pre-diabetic rats. Finally, using a clinically-relevant anaesthetic regimen of fentanyl-propofol anaesthesia, FA treatment was ineffective in young, aged and pre-diabetic animals. The protective potential of an initially promising cardioprotective treatment of high dose FA against cardiac I/R infarction, is critically dependent on experimental conditions with relevance to the clinical condition. Our data indicates the necessity of expanded pre-clinical testing of cardioprotective interventions before embarking on clinical testing, in order to prevent too many "lost-in-translation" drugs and unnecessary clinical studie

    Cyclophilin D ablation is associated with increased end-ischemic mitochondrial hexokinase activity

    No full text
    Abstract Both the absence of cyclophilin D (CypD) and the presence of mitochondrial bound hexokinase II (mtHKII) protect the heart against ischemia/reperfusion (I/R) injury. It is unknown whether CypD determines the amount of mtHKII in the heart. We examined whether CypD affects mtHK in normoxic, ischemic and preconditioned isolated mouse hearts. Wild type (WT) and CypD−/− mouse hearts were perfused with glucose only and subjected to 25 min ischemia and reperfusion. At baseline, cytosolic and mtHK was similar between hearts. CypD ablation protected against I/R injury and increased ischemic preconditioning (IPC) effects, without affecting end-ischemic mtHK. When hearts were perfused with glucose, glutamine, pyruvate and lactate, the preparation was more stable and CypD ablation−resulted in more protection that was associated with increased mtHK activity, leaving little room for additional protection by IPC. In conclusion, in glucose only-perfused hearts, deletion of CypD is not associated with end-ischemic mitochondrial-HK binding. In contrast, in the physiologically more relevant multiple-substrate perfusion model, deletion of CypD is associated with an increased mtHK activity, possibly explaining the increased protection against I/R injury

    Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation

    No full text
    Aims/hypothesis Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) constitute a novel class of glucose-lowering (type 2) kidney-targeted agents. We recently reported that the SGLT2i empagliflozin (EMPA) reduced cardiac cytosolic Na+ ([Na+](c)) and cytosolic Ca2+ ([Ca2+](c)) concentrations through inhibition of Na+/H+ exchanger (NHE). Here, we examine (1) whether the SGLT2i dapagliflozin (DAPA) and canagliflozin (CANA) also inhibit NHE and reduce [Na+](c); (2) a structural model for the interaction of SGLT2i to NHE; (3) to what extent SGLT2i affect the haemodynamic and metabolic performance of isolated hearts of healthy mice. Methods Cardiac NHE activity and [Na+](c) in mouse cardiomyocytes were measured in the presence of clinically relevant concentrations of EMPA (1 mu mol/l), DAPA (1 mu mol/l), CANA (3 mu mol/l) or vehicle. NHE docking simulation studies were applied to explore potential binding sites for SGTL2i. Constant-flow Langendorff-perfused mouse hearts were subjected to SGLT2i for 30 min, and cardiovascular function, O-2 consumption and energetics (phosphocreatine (PCr)/ATP) were determined. Results EMPA, DAPA and CANA inhibited NHE activity (measured through low pH recovery after NH4+ pulse: EMPA 6.69 +/- 0.09, DAPA 6.77 +/- 0.12 and CANA 6.80 +/- 0.18 vs vehicle 7.09 +/- 0.09; p <0.001 for all three comparisons) and reduced [Na+](c) (in mmol/l: EMPA 10.0 +/- 0.5, DAPA 10.7 +/- 0.7 and CANA 11.0 +/- 0.9 vs vehicle 12.7 +/- 0.7; p <0.001). Docking studies provided high binding affinity of all three SGLT2i with the extracellular Na+-binding site of NHE. EMPA and CANA, but not DAPA, induced coronary vasodilation of the intact heart. PCr/ATP remained unaffected. Conclusions/interpretation EMPA, DAPA and CANA directly inhibit cardiac NHE flux and reduce [Na+](c), possibly by binding with the Na+-binding site of NHE-1. Furthermore, EMPA and CANA affect the healthy heart by inducing vasodilation. The [Na+](c)-lowering class effect of SGLT2i is a potential approach to combat elevated [Na+](c) that is known to occur in heart failure and diabete

    Pathophysiological Consequences of TAT-HKII Peptide Administration Are Independent of Impaired Vascular Function and Ensuing Ischemia

    Get PDF
    <p>Rationale: We have shown that partial dissociation of hexokinase II (HKII) from mitochondria in the intact heart using low-dose transactivating transcriptional factor (TAT)-HKII (200 nmol/L) prevents the cardioprotective effects of ischemic preconditioning, whereas high-dose TAT-HKII (10 mu mol/L) administration results in rapid myocardial dysfunction, mitochondrial depolarization, and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely because of vasoconstriction and ensuing ischemia.</p><p>Objective: To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium.</p><p>Methods and Results: Using a variety of complementary techniques, including mitochondrial membrane potential (Delta Psi m) imaging, high-resolution optical action potential mapping, analysis of lactate production, nicotinamide adenine dinucleotide epifluorescence, lactate dehydrogenase release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of ischemic preconditioning, is not associated with ischemia or ischemic injury.</p><p>Conclusions: Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia, thereby lending further credence to the role of mitochondria-bound HKII as a critical regulator of cardiac function, ischemia-reperfusion injury, and cardioprotection by ischemic preconditioning. (Circ Res. 2013;112:e8-e13.)</p>
    corecore