36 research outputs found

    Image_3_Combined regulation of pro-inflammatory cytokines production by STAT3 and STAT5 in a model of B. pertussis infection of alveolar macrophages.tif

    No full text
    Bordetella pertussis is a highly contagious respiratory pathogen responsible for whooping-cough or pertussis. Despite high vaccination coverage worldwide, this gram-negative bacterium continues to spread among the population. B. pertussis is transmitted by aerosol droplets from an infected individual to a new host and will colonize its upper respiratory tract. Alveolar macrophages (AMs) are effector cells of the innate immune system that phagocytose B. pertussis and secrete both pro-inflammatory and antimicrobial mediators in the lungs. However, understanding their role in B. pertussis pathogenesis at the molecular level is hampered by the limited number of primary AMs that can be collected in vivo. In order to decipher the regulation of innate response induced by B. pertussis infection, we used for the first time self-renewing, non-transformed cells, called Max Planck Institute (MPI) cells, which are phenotypically and functionally very close to pulmonary AMs. Using optimized infection conditions, we characterized the entry and the clearance of B. pertussis within MPI macrophages. We showed that under these conditions, MPI cells exhibit a pro-inflammatory phenotype with the production of TNF, IL-1β, IL-6 and MIP-2α, similarly to primary AMs purified from broncho-alveolar fluids of mice. In addition, we explored the yet uncharacterized role of the signal transduction activator of transcription (STAT) proteins family in the innate immune response to B. pertussis infection and showed for the first time the parallel regulation of pro-inflammatory cytokines by STAT3 and STAT5 in MPI macrophages infected by B. pertussis. Altogether, this work highlights the interest of using MPI cells for experiments optimization and preliminary data acquisition to understand B. pertussis interaction with AMs, and thus significantly reduce the number of animals to be sacrificed.</p

    Image_1_Combined regulation of pro-inflammatory cytokines production by STAT3 and STAT5 in a model of B. pertussis infection of alveolar macrophages.tif

    No full text
    Bordetella pertussis is a highly contagious respiratory pathogen responsible for whooping-cough or pertussis. Despite high vaccination coverage worldwide, this gram-negative bacterium continues to spread among the population. B. pertussis is transmitted by aerosol droplets from an infected individual to a new host and will colonize its upper respiratory tract. Alveolar macrophages (AMs) are effector cells of the innate immune system that phagocytose B. pertussis and secrete both pro-inflammatory and antimicrobial mediators in the lungs. However, understanding their role in B. pertussis pathogenesis at the molecular level is hampered by the limited number of primary AMs that can be collected in vivo. In order to decipher the regulation of innate response induced by B. pertussis infection, we used for the first time self-renewing, non-transformed cells, called Max Planck Institute (MPI) cells, which are phenotypically and functionally very close to pulmonary AMs. Using optimized infection conditions, we characterized the entry and the clearance of B. pertussis within MPI macrophages. We showed that under these conditions, MPI cells exhibit a pro-inflammatory phenotype with the production of TNF, IL-1β, IL-6 and MIP-2α, similarly to primary AMs purified from broncho-alveolar fluids of mice. In addition, we explored the yet uncharacterized role of the signal transduction activator of transcription (STAT) proteins family in the innate immune response to B. pertussis infection and showed for the first time the parallel regulation of pro-inflammatory cytokines by STAT3 and STAT5 in MPI macrophages infected by B. pertussis. Altogether, this work highlights the interest of using MPI cells for experiments optimization and preliminary data acquisition to understand B. pertussis interaction with AMs, and thus significantly reduce the number of animals to be sacrificed.</p

    Table_1_Combined regulation of pro-inflammatory cytokines production by STAT3 and STAT5 in a model of B. pertussis infection of alveolar macrophages.docx

    No full text
    Bordetella pertussis is a highly contagious respiratory pathogen responsible for whooping-cough or pertussis. Despite high vaccination coverage worldwide, this gram-negative bacterium continues to spread among the population. B. pertussis is transmitted by aerosol droplets from an infected individual to a new host and will colonize its upper respiratory tract. Alveolar macrophages (AMs) are effector cells of the innate immune system that phagocytose B. pertussis and secrete both pro-inflammatory and antimicrobial mediators in the lungs. However, understanding their role in B. pertussis pathogenesis at the molecular level is hampered by the limited number of primary AMs that can be collected in vivo. In order to decipher the regulation of innate response induced by B. pertussis infection, we used for the first time self-renewing, non-transformed cells, called Max Planck Institute (MPI) cells, which are phenotypically and functionally very close to pulmonary AMs. Using optimized infection conditions, we characterized the entry and the clearance of B. pertussis within MPI macrophages. We showed that under these conditions, MPI cells exhibit a pro-inflammatory phenotype with the production of TNF, IL-1β, IL-6 and MIP-2α, similarly to primary AMs purified from broncho-alveolar fluids of mice. In addition, we explored the yet uncharacterized role of the signal transduction activator of transcription (STAT) proteins family in the innate immune response to B. pertussis infection and showed for the first time the parallel regulation of pro-inflammatory cytokines by STAT3 and STAT5 in MPI macrophages infected by B. pertussis. Altogether, this work highlights the interest of using MPI cells for experiments optimization and preliminary data acquisition to understand B. pertussis interaction with AMs, and thus significantly reduce the number of animals to be sacrificed.</p

    Image_4_Combined regulation of pro-inflammatory cytokines production by STAT3 and STAT5 in a model of B. pertussis infection of alveolar macrophages.tif

    No full text
    Bordetella pertussis is a highly contagious respiratory pathogen responsible for whooping-cough or pertussis. Despite high vaccination coverage worldwide, this gram-negative bacterium continues to spread among the population. B. pertussis is transmitted by aerosol droplets from an infected individual to a new host and will colonize its upper respiratory tract. Alveolar macrophages (AMs) are effector cells of the innate immune system that phagocytose B. pertussis and secrete both pro-inflammatory and antimicrobial mediators in the lungs. However, understanding their role in B. pertussis pathogenesis at the molecular level is hampered by the limited number of primary AMs that can be collected in vivo. In order to decipher the regulation of innate response induced by B. pertussis infection, we used for the first time self-renewing, non-transformed cells, called Max Planck Institute (MPI) cells, which are phenotypically and functionally very close to pulmonary AMs. Using optimized infection conditions, we characterized the entry and the clearance of B. pertussis within MPI macrophages. We showed that under these conditions, MPI cells exhibit a pro-inflammatory phenotype with the production of TNF, IL-1β, IL-6 and MIP-2α, similarly to primary AMs purified from broncho-alveolar fluids of mice. In addition, we explored the yet uncharacterized role of the signal transduction activator of transcription (STAT) proteins family in the innate immune response to B. pertussis infection and showed for the first time the parallel regulation of pro-inflammatory cytokines by STAT3 and STAT5 in MPI macrophages infected by B. pertussis. Altogether, this work highlights the interest of using MPI cells for experiments optimization and preliminary data acquisition to understand B. pertussis interaction with AMs, and thus significantly reduce the number of animals to be sacrificed.</p

    Image_2_Combined regulation of pro-inflammatory cytokines production by STAT3 and STAT5 in a model of B. pertussis infection of alveolar macrophages.tif

    No full text
    Bordetella pertussis is a highly contagious respiratory pathogen responsible for whooping-cough or pertussis. Despite high vaccination coverage worldwide, this gram-negative bacterium continues to spread among the population. B. pertussis is transmitted by aerosol droplets from an infected individual to a new host and will colonize its upper respiratory tract. Alveolar macrophages (AMs) are effector cells of the innate immune system that phagocytose B. pertussis and secrete both pro-inflammatory and antimicrobial mediators in the lungs. However, understanding their role in B. pertussis pathogenesis at the molecular level is hampered by the limited number of primary AMs that can be collected in vivo. In order to decipher the regulation of innate response induced by B. pertussis infection, we used for the first time self-renewing, non-transformed cells, called Max Planck Institute (MPI) cells, which are phenotypically and functionally very close to pulmonary AMs. Using optimized infection conditions, we characterized the entry and the clearance of B. pertussis within MPI macrophages. We showed that under these conditions, MPI cells exhibit a pro-inflammatory phenotype with the production of TNF, IL-1β, IL-6 and MIP-2α, similarly to primary AMs purified from broncho-alveolar fluids of mice. In addition, we explored the yet uncharacterized role of the signal transduction activator of transcription (STAT) proteins family in the innate immune response to B. pertussis infection and showed for the first time the parallel regulation of pro-inflammatory cytokines by STAT3 and STAT5 in MPI macrophages infected by B. pertussis. Altogether, this work highlights the interest of using MPI cells for experiments optimization and preliminary data acquisition to understand B. pertussis interaction with AMs, and thus significantly reduce the number of animals to be sacrificed.</p

    Seroprevalence of anti-PT IgG concentrations according to the village and visit for children younger (panel A) and older than 3 years (panel B).

    No full text
    <p>Chi-square test between seropositive children (anti-PT IgG concentration >30 IU/ml) and seronegative children at each visit within villages: panel A.: Agniam, <b>p = 0.3588</b>; Fanaye, p = 0.5227; Niandane, p = 0.4056; Pendao, p = 0.4276; Guédé, p = 0.9928; panel B.: Agniam, <b>p<0.0008</b>; Fanaye, p = 0.7641; Niandane, p = 0.2280; Pendao, p = 0.3292; Guédé, p = 0.1754.</p

    PT-IgG responses at T1.

    No full text
    a<p>One-way ANOVA between IgG responses according to villages.</p>b<p>Chi-square test between seroprevalence according to villages.</p

    Anti-PT seroprevalence at T1 in all villages according to age category.

    No full text
    a<p>Chi-square test has been performed.</p>b<p>Kruskal-Wallis test between IgG responses according to the villages.</p>c<p>Mann-Whitney test has been performed for children of the same villages.</p
    corecore