7 research outputs found

    Distinct microRNA and protein profiles of extracellular vesicles secreted from myotubes from morbidly obese donors with type 2 diabetes in response to electrical pulse stimulation

    Get PDF
    Lifestyle disorders like obesity, type 2 diabetes (T2D), and cardiovascular diseases can be prevented and treated by regular physical activity. During exercise, skeletal muscles release signaling factors that communicate with other organs and mediate beneficial effects of exercise. These factors include myokines, metabolites, and extracellular vesicles (EVs). In the present study, we have examined how electrical pulse stimulation (EPS) of myotubes, a model of exercise, affects the cargo of released EVs. Chronic low frequency EPS was applied for 24 h to human myotubes isolated and differentiated from biopsy samples from six morbidly obese females with T2D, and EVs, both exosomes and microvesicles (MV), were isolated from cell media 24 h thereafter. Size and concentration of EV subtypes were characterized by nanoparticle tracking analysis, surface markers were examined by flow cytometry and Western blotting, and morphology was confirmed by transmission electron microscopy. Protein content was assessed by high-resolution proteomic analysis (LC-MS/MS), non-coding RNA was quantified by Affymetrix microarray, and selected microRNAs (miRs) validated by real time RT-qPCR. The size and concentration of exosomes and MV were unaffected by EPS. Of the 400 miRs identified in the EVs, EPS significantly changed the level of 15 exosome miRs, of which miR-1233-5p showed the highest fold change. The miR pattern of MV was unaffected by EPS. Totally, about 1000 proteins were identified in exosomes and 2000 in MV. EPS changed the content of 73 proteins in exosomes, 97 in MVs, and of these four were changed in both exosomes and MV (GANAB, HSPA9, CNDP2, and ATP5B). By matching the EPS-changed miRs and proteins in exosomes, 31 targets were identified, and among these several promising signaling factors. Of particular interest were CNDP2, an enzyme that generates the appetite regulatory metabolite Lac-Phe, and miR-4433b-3p, which targets CNDP2. Several of the regulated miRs, such as miR-92b-5p, miR-320b, and miR-1233-5p might also mediate interesting signaling functions. In conclusion, we have used a combined transcriptome-proteome approach to describe how EPS affected the cargo of EVs derived from myotubes from morbidly obese patients with T2D, and revealed several new factors, both miRs and proteins, that might act as exercise factors

    Immunomodulatory Effects of the Agaricus blazei Murrill-Based Mushroom Extract AndoSan in Patients with Multiple Myeloma Undergoing High Dose Chemotherapy and Autologous Stem Cell Transplantation: A Randomized, Double Blinded Clinical Study

    Get PDF
    Forty patients with multiple myeloma scheduled to undergo high dose chemotherapy with autologous stem cell support were randomized in a double blinded fashion to receive adjuvant treatment with the mushroom extract AndoSan, containing 82% of Agaricus blazei Murrill (19 patients) or placebo (21 patients). Intake of the study product started on the day of stem cell mobilizing chemotherapy and continued until the end of aplasia after high dose chemotherapy, a period of about seven weeks. Thirty-three patients were evaluable for all study endpoints, while all 40 included patients were evaluable for survival endpoints. In the leukapheresis product harvested after stem cell mobilisation, increased percentages of Treg cells and plasmacytoid dendritic cells were found in patients receiving AndoSan. Also, in this group, a significant increase of serum levels of IL-1ra, IL-5, and IL-7 at the end of treatment was found. Whole genome microarray showed increased expression of immunoglobulin genes, Killer Immunoglobulin Receptor (KIR) genes, and HLA genes in the Agaricus group. Furthermore, AndoSan displayed a concentration dependent antiproliferative effect on mouse myeloma cells in vitro. There were no statistically significant differences in treatment response, overall survival, and time to new treatment. The study was registered with Clinicaltrials.gov NCT00970021

    Urine β-2-Microglobulin, Osteopontin, and Trefoil Factor 3 May Early Predict Acute Kidney Injury and Outcome after Cardiac Arrest

    No full text
    Purpose. Acute kidney injury (AKI) is a common complication after out-of-hospital cardiac arrest (OHCA), leading to increased mortality and challenging prognostication. Our aim was to examine if urine biomarkers could early predict postarrest AKI and patient outcome. Methods. A prospective observational study of resuscitated, comatose OHCA patients admitted to Oslo University Hospital in Norway. Urine samples were collected at admission and day three postarrest and analysed for β-2-microglobulin (β2M), osteopontin, and trefoil factor 3 (TFF3). Outcome variables were AKI within three days according to the Kidney Disease Improving Global Outcome criteria, in addition to six-month mortality and poor neurological outcome (PNO) (cerebral performance category 3–5). Results. Among 195 included patients (85% males, mean age 60 years), 88 (45%) developed AKI, 88 (45%) died, and 96 (49%) had PNO. In univariate analyses, increased urine β2M, osteopontin, and TFF3 levels sampled at admission and day three were independent risk factors for AKI, mortality, and PNO. Exceptions were that β2M measured at day three did not predict any of the outcomes, and TFF3 at admission did not predict AKI. In multivariate analyses, combining clinical parameters and biomarker levels, the area under the receiver operating characteristics curves (95% CI) were 0.729 (0.658–0.800), 0.797 (0.733–0.861), and 0.812 (CI 0.750–0.874) for AKI, mortality, and PNO, respectively. Conclusions. Urine levels of β2M, osteopontin, and TFF3 at admission and day three were associated with increased risk for AKI, mortality, and PNO in comatose OHCA patients. This trail is registered with NCT01239420

    Critical Roles of Complement and Antibodies in Host Defense Mechanisms against Neisseria meningitidis as Revealed by Human Complement Genetic Deficiencies ▿

    No full text
    Certain complement defects are associated with an increased propensity to contract Neisseria meningitidis infections. We performed detailed analyses of complement-mediated defense mechanisms against N. meningitidis 44/76 with whole blood and serum from two adult patients who were completely C2 or C5 deficient. The C5-deficient patient and the matched control were also deficient in mannose-binding lectin (MBL). The proliferation of meningococci incubated in freshly drawn whole blood was estimated by CFU and quantitative DNA real-time PCR. The serum bactericidal activity and opsonophagocytic activity by granulocytes were investigated, including heat-inactivated postvaccination sera, to examine the influence of antimeningococcal antibodies. The meningococci proliferated equally in C2- and C5-deficient blood, with a 2 log10 increase of CFU and 4- to 5-log10 increase in DNA copies. Proliferation was modestly decreased in reconstituted C2-deficient and control blood. After reconstitution of C5-deficient blood, all meningococci were killed, which is consistent with high antibody titers being present. The opsonophagocytic activity was strictly C2 dependent, appeared with normal serum, and increased with postvaccination serum. Serum bactericidal activity was strictly dependent on C2, C5, and high antibody titers. MBL did not influence any of the parameters observed. Complement-mediated defense against meningococci was thus dependent on the classical pathway. Some opsonophagocytic activity occurred despite low levels of antimeningococcal antibodies but was more efficient with immune sera. Serum bactericidal activity was dependent on C2, C5, and immune sera. MBL did not influence any of the parameters observed
    corecore