5 research outputs found

    Selecting the Correct Weighting Factors for Linear and Quadratic Calibration Curves with Least-Squares Regression Algorithm in Bioanalytical LC-MS/MS Assays and Impacts of Using Incorrect Weighting Factors on Curve Stability, Data Quality, and Assay Performance

    No full text
    A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (<i>x</i>). The weighting factor of 1, 1/<i>x</i>, or 1/<i>x</i><sup>2</sup> should be selected if, over the entire concentration range, σ is a constant, σ<sup>2</sup> is proportional to <i>x</i>, or σ is proportional to <i>x</i>, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/<i>x</i><sup>2</sup> should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/<i>x</i><sup>2</sup> and 1/<i>y</i><sup>2</sup> was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm

    Practical and Efficient Strategy for Evaluating Oral Absolute Bioavailability with an Intravenous Microdose of a Stable Isotopically-Labeled Drug Using a Selected Reaction Monitoring Mass Spectrometry Assay

    No full text
    A strategy of using selected reaction monitoring (SRM) mass spectrometry for evaluating oral absolute bioavailability with concurrent intravenous (IV) microdosing a stable isotopically labeled (SIL) drug was developed and validated. First, the isotopic contribution to SRM (ICSRM) of the proposed SIL drug and SIL internal standard (IS) was theoretically calculated to guide their chemical synthesis. Second, the lack of an isotope effect on drug exposure was evaluated in a monkey study by IV dosing a mixture of the SIL and the unlabeled drugs. Third, after the SIL drug (100 μg) was concurrently IV dosed to humans, at <i>T</i><sub>max</sub> of an oral therapeutic dose of the unlabeled drug, both drugs in plasma specimens were simultaneously quantified by a sensitive and accurate SRM assay. This strategy significantly improves bioanalytical data quality and saves time, costs, and resources by avoiding a traditional absolute bioavailability study or the newer approach of microdoses of a radio-microtracer measured by accelerator mass spectrometry

    Calculation and Mitigation of Isotopic Interferences in Liquid Chromatography–Mass Spectrometry/Mass Spectrometry Assays and Its Application in Supporting Microdose Absolute Bioavailability Studies

    No full text
    A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC–MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (IV) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the IV-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC–MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled IV-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs

    Fully Validated LC-MS/MS Assay for the Simultaneous Quantitation of Coadministered Therapeutic Antibodies in Cynomolgus Monkey Serum

    No full text
    An LC-MS/MS assay was developed and fully validated for the simultaneous quantitation of two coadministered human monoclonal antibodies (mAbs), mAb-A and mAb-B of IgG4 subclass, in monkey serum. The total serum proteins were digested with trypsin at 50 °C for 30 min after methanol denaturation and precipitation, dithiothreitol reduction, and iodoacetamide alkylation. The tryptic peptides were chromatographically separated with a C18 column (2.1 × 100 mm, 1.7 μm) with mobile phases of 0.1% formic acid in water and acetonitrile. Four peptides, a unique peptide for each mAb and two confirmatory peptides from different antibody domains, were simultaneously quantified by LC-MS/MS in the multiple reaction-monitoring mode. Stable isotopically labeled peptides with flanking amino acids on C- and N-terminals were used as internal standards to minimize the variability during sample processing and detection. The LC-MS/MS assay showed lower limit of quantitation (LLOQ) at 5 μg/mL for mAb-A and 25 μg/mL for mAb-B. The intra- and interassay precision (%CV) was within 10.0% and 8.1%, respectively, and the accuracy (%Dev) was within ±5.4% for all the peptides. Other validation parameters, including sensitivity, selectivity, dilution linearity, processing recovery and matrix effect, autosampler carryover, run size, stability, and data reproducibility, were all evaluated. The confirmatory peptides played a critical role in confirming quantitation accuracy and the integrity of the drugs in the study samples. The robustness of the LC-MS/MS assay and the data agreement with the ligand binding data demonstrated that LC-MS/MS is a reliable and complementary approach for the quantitation of coadministered antibody drugs

    Selective Reaction Monitoring of Negative Electrospray Ionization Acetate Adduct Ions for the Bioanalysis of Dapagliflozin in Clinical Studies

    No full text
    Dapagliflozin (Farxiga), alone, or in the fixed dose combination with metformin (Xigduo), is an orally active, highly selective, reversible inhibitor of sodium-glucose cotransporter type 2 (SGLT2) that is marketed in United States, Europe, and many other countries for the treatment of type 2 diabetes mellitus. Here we report a liquid chromatography–tandem mass spectrometry (LC–MS/MS) bioanalytical assay of dapagliflozin in human plasma. A lower limit of quantitation (LLOQ) at 0.2 ng/mL with 50 μL of plasma was obtained, which reflects a 5-fold improvement of the overall assay sensitivity in comparison to the previous most sensitive assay using the same mass spectrometry instrumentation. In this new assay, acetate adduct ions in negative electrospray ionization mode were used as the precursor ions for selective reaction monitoring (SRM) detection. Sample preparation procedures and LC conditions were further developed to enhance the column life span and achieve the separation of dapagliflozin from potential interferences, especially its epimers. The assay also quantifies dapagliflozin’s major systemic circulating glucuronide metabolite, BMS-801576, concentrations in human plasma. The assay was successfully transferred to contract research organizations (CROs), validated, and implemented for the sample analysis of pediatric and other critical clinical studies. This assay can be widely used for bioanalytical support of future clinical studies for the newly approved drug Farxiga or any combination therapy containing dapagliflozin
    corecore