16 research outputs found

    A circular economy metric to determine sustainable resource use illustrated with neodymium for wind turbines

    Get PDF
    The finite capacity of the Earth to provide the resources needed to make products is beginning to dictate policy decisions and citizen behaviours. Herein a methodology is proposed that considers the function (i.e., efficiency and durability) of a product as a way of normalising and hence justifying its resource use. Titled ‘Performance-weighted abiotic Resource Depletion’ (PwRD), this approach allows the resource use of different products to be directly compared, analogous to an absolute sustainability assessment. The PwRD metric quantifies concerns over the supply risk of elements and indicates reasonable actions to sustain a circular economy. This new format of circularity indicator is explained with the case study of neodymium for wind turbine magnets. Individual products as well as larger infrastructure projects such as wind farms can be assessed. It was found that the electrical energy produced by a wind turbine in the USA does not justify the quantity of neodymium required. Demand for the function of products is a variable in PwRD and is equally important as resource use in sustaining a circular economy. In regions of low electricity demand per capita such as the Philippines and Pakistan, the same quantity of neodymium as used in a wind turbine installed in the USA was found to be acceptable for sustaining a circular economy

    Context analysis for transformative change in the ceramic industry

    Get PDF
    Foundation industries are under increasing pressure to transform for sustainable development. Ceramics play a key role within foundation industries as a necessary material for building manufacturing facilities. Therefore, transforming the ceramic industry could support changes across other foundation industries as well, making it one of the most important industries to transform. Given the limited finances, staff time, and other resources to support transformative change, this study aims to identify a set of key intervention points to enable transformative change in the ceramic industry in the United Kingdom. A desk-based study, reviewing written industry, government, and scientific materials available in the public domain, was carried out to identify initial key intervention points for transformative change. The PESTLE approach was used to analyse macro factors in political, environmental, social, technological, legal, and economic domains in order to understand how the context enables or constrains change in the ceramic industry. A SWOT analysis was conducted to further consolidate the findings. Our analysis detected over 50 transformative change drivers and barriers and showed that decarbonisation and energy-saving strategies were the main drivers for transforming the UK ceramic industry. On the other hand, foreign government policy and legislation, trade barriers, skills shortages, and costly alternative energy sources were among the major barriers

    Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning

    Get PDF
    Energy sector policies have focused historically on the planning, design and construction of energy infrastructures, while typically overlooking the processes required for the management of their end-of-life, and particularly their decommissioning. However, decommissioning of existing and future energy infrastructures is constrained by a plethora of technical, economic, social and environmental challenges that must be understood and addressed if such infrastructures are to make a net-positive contribution over their whole life. Here, we introduce the magnitude and variety of these challenges to raise awareness and stimulate debate on the development of reasonable policies for current and future decommissioning projects. Focusing on power plants, the paper provides the foundations for the interdisciplinary thinking required to deliver an integrated decommissioning policy that incorporates circular economy principles to maximise value throughout the lifecycle of energy infrastructures. We conclude by suggesting new research paths that will promote more sustainable management of energy infrastructures at the end of their life

    Promoting industrial symbiosis : analysing context and network evolution during biowaste-to-resource innovations.

    No full text
    Government and industry increasingly face challenges resulting from resource scarcity and climate change. By reducing carbon emissions whilst promoting resource efficiency and business development, industrial symbiosis has been recognised as a strategy to manage these challenges. Industrial symbiosis can be interpreted as the innovative use of waste from one company as a resource for another company, i.e. waste-to-resource innovation. These resource innovations involve the development of relations between waste producers and users, and often governmental organisations and other actors. A review of industrial symbiosis and relevant network and innovation literature concluded that empirical understanding of the implementation of industrial symbiosis, and consequently how it can be promoted by public and private organisations, needed considerable improvement. Hence, a qualitative empirical exploration was conducted to answer the question: How and why did industrial symbiosis develop over time? The exploration was carried out in the Humber region (UK) and, with several bio-based developments emerging in the area, focused on biowaste-to-resource innovation. Case studies with companies revealed: the social process through which resource partnerships developed; important contextual conditions (resource security, economic benefits, and governance); and varying network diversification and strengthening strategies. Analysing these innovations in their longer-term dynamic contexts revealed different business-responses to context-changes through their varying innovation and government-engagement strategies. Some companies were constrained by poor harmonisation of economic and various governmental drivers. In particular, since 2012, regional governance capacity for biowaste-to-resource innovation decreased while such innovations gained momentum at national government level. These findings have added to understanding of variation in factors and processes associated with implementing industrial symbiosis through company activities, strategies, and collaborations; and the relations between context dynamics, evolution of industrial symbiosis networks, and on-going business development. The level of detail revealed in this inductive empirical research contributed to identifying numerous further research directions. Moreover, practical recommendations were provided to companies and governmental organisations supporting the promotion of industrial symbiosis and contributing to the on-going transition to a more resource efficient and circular economy

    Promoting industrial symbiosis : analysing context and network evolution during biowaste-to-resource innovations.

    Get PDF
    Government and industry increasingly face challenges resulting from resource scarcity and climate change. By reducing carbon emissions whilst promoting resource efficiency and business development, industrial symbiosis has been recognised as a strategy to manage these challenges. Industrial symbiosis can be interpreted as the innovative use of waste from one company as a resource for another company, i.e. waste-to-resource innovation. These resource innovations involve the development of relations between waste producers and users, and often governmental organisations and other actors. A review of industrial symbiosis and relevant network and innovation literature concluded that empirical understanding of the implementation of industrial symbiosis, and consequently how it can be promoted by public and private organisations, needed considerable improvement. Hence, a qualitative empirical exploration was conducted to answer the question: How and why did industrial symbiosis develop over time? The exploration was carried out in the Humber region (UK) and, with several bio-based developments emerging in the area, focused on biowaste-to-resource innovation. Case studies with companies revealed: the social process through which resource partnerships developed; important contextual conditions (resource security, economic benefits, and governance); and varying network diversification and strengthening strategies. Analysing these innovations in their longer-term dynamic contexts revealed different business-responses to context-changes through their varying innovation and government-engagement strategies. Some companies were constrained by poor harmonisation of economic and various governmental drivers. In particular, since 2012, regional governance capacity for biowaste-to-resource innovation decreased while such innovations gained momentum at national government level. These findings have added to understanding of variation in factors and processes associated with implementing industrial symbiosis through company activities, strategies, and collaborations; and the relations between context dynamics, evolution of industrial symbiosis networks, and on-going business development. The level of detail revealed in this inductive empirical research contributed to identifying numerous further research directions. Moreover, practical recommendations were provided to companies and governmental organisations supporting the promotion of industrial symbiosis and contributing to the on-going transition to a more resource efficient and circular economy

    Developing bio-based industries: The role of social networks in innovative material synergies

    No full text

    Developing bio-based industries: The role of governmental organisations

    No full text

    Promoting industrial symbiosis: Using the concept of proximity to explore social network development

    No full text
    Industrial symbiosis (IS) has been identified as a strategy for promoting industrial sustainability. IS has been defined as the development of close working agreements between industrial and other organizations that, through the innovative reuse, recycling or sharing of resources, leads to resource efficiency. Key to IS are innovation and social network development. This article critically reviews IS literature and concludes that, to inform pro-active strategies for promoting IS, the understanding of the social processes leading to resource innovation needs to be improved. Industrial ecologists generally believe that close geographic proximity and trust are essential to the development of IS. This article argues, however, that there is a need to learn more about the meaning of, need for, and specific role of geographic proximity and trust in IS and, additionally, that other potentially important social factors have remained under-explored. To move IS research forward, this article suggests to engage with research in economic geography on the concept of ‘proximity’, which draws attention to the ways in which geographic, cognitive, institutional, social and organizational distances between actors might affect innovation. Arguably the analytically distinct but flexible dimensions of proximity can be useful to explore how and why IS develops. The resulting qualitative knowledge would form a basis for researching whether general patterns for IS development exist and, more importantly, could inform public and private strategies that indicate which actions could be taken, when and in what way to promote resource synergies and sustainable industrial development
    corecore