56 research outputs found

    Two-photon Imaging of Microglial Processes' Attraction Toward ATP or Serotonin in Acute Brain Slices

    Get PDF
    International audienceMicroglial cells are resident innate immune cells of the brain that constantly scan their environment with their long processes and, upon disruption of homeostasis, undergo rapid morphological changes. For example, a laser lesion induces in a few minutes an oriented growth of microglial processes, also called "directional motility", toward the site of injury. A similar effect can be obtained by delivering locally ATP or serotonin (5-hydroxytryptamine [5-HT]). In this article, we describe a protocol to induce a directional growth of microglial processes toward a local application of ATP or 5-HT in acute brain slices of young and adult mice and to image this attraction over time by multiphoton microscopy. A simple method of quantification with free and open-source image analysis software is proposed. A challenge that still characterizes acute brain slices is the limited time, decreasing with age, during which the cells remain in a physiological state. This protocol, thus, highlights some technical improvements (medium, air-liquid interface chamber, imaging chamber with a double perfusion) aimed at optimizing the viability of microglial cells over several hours, especially in slices from adult mice

    Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation.

    Get PDF
    International audienceVezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation

    Prenatal Activation of Microglia Induces Delayed Impairment of Glutamatergic Synaptic Function

    Get PDF
    BACKGROUND: Epidemiological studies have linked maternal infection during pregnancy to later development of neuropsychiatric disorders in the offspring. In mice, experimental inflammation during embryonic development impairs behavioral and cognitive performances in adulthood. Synaptic dysfunctions may be at the origin of cognitive impairments, however the link between prenatal inflammation and synaptic defects remains to be established. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that prenatal alteration of microglial function, including inflammation, induces delayed synaptic dysfunction in the adult. DAP12 is a microglial signaling protein expressed around birth, mutations of which in the human induces the Nasu-Hakola disease, characterized by early dementia. We presently report that synaptic excitatory currents in mice bearing a loss-of-function mutation in the DAP12 gene (DAP12(KI) mice) display enhanced relative contribution of AMPA. Furthermore, neurons from DAP12(KI) P0 pups cultured without microglia develop similar synaptic alterations, suggesting that a prenatal dysfunction of microglia may impact synaptic function in the adult. As we observed that DAP12(KI) microglia overexpress genes for IL1beta, IL6 and NOS2, which are inflammatory proteins, we analyzed the impact of a pharmacologically-induced prenatal inflammation on synaptic function. Maternal injection of lipopolysaccharides induced activation of microglia at birth and alteration of glutamatergic synapses in the adult offspring. Finally, neurons cultured from neonates born to inflamed mothers and cultured without microglia also displayed altered neuronal activity. CONCLUSION/SIGNIFICANCE: Our results demonstrate that prenatal inflammation is sufficient to induce synaptic alterations with delay. We propose that these alterations triggered by prenatal activation of microglia provide a cellular basis for the neuropsychiatric defects induced by prenatal inflammation

    Ezrin Is Highly Expressed in Early Thymocytes, but Dispensable for T Cell Development in Mice

    Get PDF
    Ezrin/radixin/moesin (ERM) proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored.We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin(-/-) mice likely arise as a consequence of nutritional stress.We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin

    Relations entre la membrane et le cytosquelette lors de la formation de la synapse immunologique et l'activation des lymphocytes T

    No full text
    Les lymphocytes T jouent un rôle central dans la défense immunitaire grâce à leur capacité à identifier des molécules étrangères (antigènes), qu'ils reconnaissent sous forme de peptides présentés à la surface de cellules présentatrices d'antigène (CPA). L'activation d'un lymphocyte T suppose donc la formation d'un conjugué avec une autre cellule. Si la CPA est chargée en antigène, de nombreuses molécules s'accumulent d'une manière organisée dans la zone de contact entre les deux cellules, appelée synapse immunologique. L'état de maturation de cette synapse est corrélé au niveau d'activation du lymphocyte T. Le cytosquelette d'actine est également accumulé dans la zone de contact, et son activité est indispensable à la formation de la synapse et à l'activation de la cellule T.Pour préciser les liens entre la formation de la synapse immunologique, l'activation cellulaire et le cytosquelette d'actine, nous avons étudié le rôle de deux protéines interagissant avec l'actine : l'ezrine...T lymphocytes play a central role in the immune system, due to their ability to identify foreign molecules (antigens) as peptides presented on the surface of antigen presenting cells (APC).Thus, T cell activation relies on the formation of a conjugate with another cell. If the APC is loaded with antigens, the contact area is a site of accumulation of many molecules that organize into a specialized structure called the immune synapse. The state of maturation of the synapse is correlated to the state of activation of the T cell. Actin cytoskeleton also accumulates in the contact area and its activity is required for the formation of the immune synapse and for T cell activation. In order to dissect the links between immune synapse formation, activation and actin cytoskeleton, we analysed the role of two actin-binding proteins : ezrin, which is a membrane-microfilament linker, and coronin-1, which is specifically expressed in the hematopoietic lineage...ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
    corecore