749 research outputs found

    MarR family transcription factors

    Get PDF

    Surface salt bridges modulate DNA wrapping by the Type II DNA-binding protein TF1

    Get PDF
    The histone-like protein HU is involved in compaction of the bacterial genome. Up to 37 bp of DNA may be wrapped about some HU homologues in a process that has been proposed to depend on a linked disruption of surface salt bridges that liberates cationic side chains for interaction with the DNA. Despite significant sequence conservation between HU homologues, binding sites from 9 to 37 bp have been reported. TF1, an HU homologue that is encoded by Bacillus subtilis bacteriophage SPO1, has nM affinity for 37 bp preferred sites in DNA with 5-hydroxymethyluracil (hmU) in place of thymine. On the basis of electrophoretic mobility shift assays, we show that TF1-DNA complex formation is associated with a net release of only ∼0.5 cations. The structure of TF1 suggests that Asp13 can form a dehydrated surface salt bridge with Lys23; substitution of Asp13 with Ala increases the net release of cations to ∼1. These data are consistent with complex formation linked to disruption of surface salt bridges. Substitution of Glu90 with Ala, which would expose Lys87 predicted to contact DNA immediately distal to a proline-mediated DNA kink, causes an increase in affinity and an abrogation of the preference for hmU-containing DNA. We propose that hmU preference is due to finely tuned interactions at the sites of kinking that expose a differential flexibility of hmU- and T-containing DNA. Our data further suggest that the difference in binding site size for HU homologues is based on a differential ability to stabilize the DNA kinks

    Regulation of Metabolic Pathways by MarR Family Transcription Factors

    Get PDF
    © 2017 The Author Bacteria have evolved sophisticated mechanisms for regulation of metabolic pathways. Such regulatory circuits ensure that anabolic pathways remain repressed unless final products are in short supply and that catabolic enzymes are not produced in absence of their substrates. The precisely tuned gene activity underlying such circuits is in the purview of transcription factors that may bind pathway intermediates, which in turn modulate transcription factor function and therefore gene expression. This review focuses on the role of ligand-responsive MarR family transcription factors in controlling expression of genes encoding metabolic enzymes and the mechanisms by which such control is exerted. Prospects for exploiting these transcription factors for optimization of gene expression for metabolic engineering and for the development of biosensors are considered

    Coordination of Ribosomal Protein and Ribosomal RNA Gene Expression in Response to TOR Signaling

    Get PDF
    Cells grow in response to nutrients or growth factors, whose presence is detected and communicated by elaborate signaling pathways. Protein kinases play crucial roles in processes such as cell cycle progression and gene expression, and misregulation of such pathways has been correlated with various diseased states. Signals intended to promote cell growth converge on ribosome biogenesis, as the ability to produce cellular proteins is intimately tied to cell growth. Part of the response to growth signals is therefore the coordinate expression of genes encoding ribosomal RNA (rRNA) and ribosomal proteins (RP). A key player in regulating cell growth is the Target of Rapamycin (TOR) kinase, one of the gatekeepers that prevent cell cycle progression from G1 to S under conditions of nutritional stress. TOR is structurally and functionally conserved in all eukaryotes. Under favorable growth conditions, TOR is active and cells maintain a robust rate of ribosome biogenesis, translation initiation and nutrient import. Under stress conditions, TOR signaling is suppressed, leading to cell cycle arrest, while the failure of TOR to respond appropriately to environmental or nutritional signals leads to uncontrolled cell growth. Emerging evidence from Saccharomyces cerevisiae indicates that High Mobility Group (HMGB) proteins, non-sequence-specific chromosomal proteins, participate in mediating responses to growth signals. As HMGB proteins are distinguished by their ability to alter DNA topology, they frequently function in the assembly of higher-order nucleoprotein complexes. We review here recent evidence, which suggests that HMGB proteins may function to coordinate TOR-dependent regulation of rRNA and RP gene expression

    The N-terminal extensions of Deinococcus radiodurans Dps-1 mediate DNA major groove interactions as well as assembly of the dodecamer

    Get PDF
    Dps (DNA protection during starvation) proteins play an important role in the protection of prokaryotic macromolecules from damage by reactive oxygen species. Previous studies have suggested that the lysine-rich N-terminal tail of Dps proteins participates in DNA binding. In comparison with other Dps proteins, Dps-1 from Deinococcus radiodurans has an extended N terminus comprising 55 amino acids preceding the first helix of the 4-helix bundle monomer. In the crystal structure of Dps-1, the first ∼30 N-terminal residues are invisible, and the remaining 25 residues form a loop that harbors a novel metal-binding site. We show here that deletion of the flexible N-terminal tail obliterates DNA/Dps-1 interaction. Surprisingly, deletion of the entire N terminus also abolishes dodecameric assembly of the protein. Retention of the N-terminal metal site is necessary for formation of the dodecamer, and metal binding at this site facilitates oligomerization of the protein. Electrophoretic mobility shift assays using DNA modified with specific major/minor groove reagents further show that Dps-1 interacts through the DNA major groove. DNA cyclization assays suggest that dodecameric Dps-1 does not wrap DNA about itself. A significant decrease in DNA binding affinity accompanies a reduction in duplex length from 22 to 18 bp, but only for dodecameric Dps-1. Our data further suggest that high affinity DNA binding depends on occupancy of the N-terminal metal site. Taken together, the mode of DNA interaction by dodecameric Dps-1 suggests interaction of two metal-anchored N-terminal tails in successive DNA major grooves, leading to DNA compaction by formation of stacked protein-DNA layers. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc

    The link between purine metabolism and production of antibiotics in streptomyces

    Get PDF
    © 2019 by the authors. Stress and starvation causes bacterial cells to activate the stringent response. This results in down-regulation of energy-requiring processes related to growth, as well as an upregulation of genes associated with survival and stress responses. Guanosine tetra- and pentaphosphates (collectively referred to as (p)ppGpp) are critical for this process. In Gram-positive bacteria, a main function of (p)ppGpp is to limit cellular levels of GTP, one consequence of which is reduced transcription of genes that require GTP as the initiating nucleotide, such as rRNA genes. In Streptomycetes, the stringent response is also linked to complex morphological differentiation and to production of secondary metabolites, including antibiotics. These processes are also influenced by the second messenger c-di-GMP. Since GTP is a substrate for both (p)ppGpp and c-di-GMP, a finely tuned regulation of cellular GTP levels is required to ensure adequate synthesis of these guanosine derivatives. Here, we discuss mechanisms that operate to control guanosine metabolism and how they impinge on the production of antibiotics in Streptomyces species

    Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage

    Get PDF
    © 2016 John Wiley & Sons Ltd. The gene encoding Streptomyces coelicolor xanthine dehydrogenase regulator (XdhR) is divergently oriented from xdhABC, which encodes xanthine dehydrogenase (Xdh). Xdh is required for purine salvage pathways. XdhR was previously shown to repress xdhABC expression. We show that XdhR binds the xdhABC-xdhR intergenic region with high affinity (Kd ∼ 0.5 nM). DNaseI footprinting reveals that this complex formation corresponds to XdhR binding the xdhR gene promoter at two adjacent sites; at higher protein concentrations, protection expands to a region that overlaps the transcriptional and translational start sites of xdhABC. While substrates for Xdh have little effect on DNA binding, GTP and ppGpp dissociate the DNA-XdhR complex. Progression of cells to stationary phase, a condition associated with increased (p)ppGpp production, leads to elevated xdhB expression; in contrast, inhibition of Xdh by allopurinol results in xdhB repression. We propose that XdhR is a direct target of (p)ppGpp, and that expression of xdhABC is upregulated during the stringent response to promote purine salvage pathways, maintain GTP homeostasis and ensure continued (p)ppGpp synthesis. During exponential phase growth, basal levels of xdhABC expression may be achieved by GTP serving as a lower-affinity XdhR ligand

    Yeast HMO1: Linker histone reinvented

    Get PDF
    © 2016 American Society for Microbiology. All Rights Reserved. Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or fragile nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes

    The high mobility group protein HMO1 functions as a linker histone in yeast

    Get PDF
    © 2016 Panday and Grove. Background: Eukaryotic chromatin consists of nucleosome core particles connected by linker DNA of variable length. Histone H1 associates with the linker DNA to stabilize the higher-order chromatin structure and to modulate the ability of regulatory factors to access their nucleosomal targets. In Saccharomyces cerevisiae, the protein with greatest sequence similarity to H1 is Hho1p. However, during vegetative growth, hho1Δ; cells do not show any discernible cell growth defects or the changes in bulk chromatin structure that are characteristic of chromatin from multicellular eukaryotes in which H1 is depleted. In contrast, the yeast high mobility group (HMGB) protein HMO1 has been reported to compact chromatin, as evidenced by increased nuclease sensitivity in hmo1Δ cells. HMO1 has an unusual domain architecture compared to vertebrate HMGB proteins in that the HMG domains are followed by a lysine-rich extension instead of an acidic domain. We address here the hypothesis that HMO1 serves the role of H1 in terms of chromatin compaction and that this function requires the lysine-rich extension. Results: We show here that HMO1 fulfills this function of a linker histone. For histone H1, chromatin compaction requires its basic C-terminal domain, and we find that the same pertains to HMO1, as deletion of its C-terminal lysine-rich extension renders chromatin nuclease sensitive. On rDNA, deletion of both HMO1 and Hho1p is required for significantly increased nuclease sensitivity. Expression of human histone H1 completely reverses the nuclease sensitivity characteristic of chromatin isolated from hmo1Δ cells. While chromatin remodeling events associated with repair of DNA double-strand breaks occur faster in the more dynamic chromatin environment created by the hmo1 deletion, expression of human histone H1 results in chromatin remodeling and double-strand break repair similar to that observed in wild-type cells. Conclusion: Our data suggest that S. cerevisiae HMO1 protects linker DNA from nuclease digestion, a property also characteristic of mammalian linker histone H1. Notably, association with HMO1 creates a less dynamic chromatin environment that depends on its lysine-rich domain. That HMO1 has linker histone function has implications for investigations of chromatin structure and function as well as for evolution of proteins with roles in chromatin compaction
    • …
    corecore