2,253 research outputs found

    Distinguishing epigenetic marks of developmental and imprinting regulation.

    Get PDF
    BACKGROUND: The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. RESULTS: Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. CONCLUSION: A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two types of gene regulation, imprinting and developmental, our results suggest that different histone modifications associate with these distinct processes. This form of analysis is therefore a useful tool to elucidate the complex epigenetic code associated with genome function and to determine the underlying features conferring epigenetic states.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Mendel's laws of heredity on his 200th birthday : What have we learned by considering exceptions?

    Get PDF
    Peer reviewedPostprin

    Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models.

    Get PDF
    The rising frequency of ART-conceived births is accompanied by the need for an improved understanding of the implications of ART on gametes and embryos. Increasing evidence from mouse models and human epidemiological data suggests that ART procedures may play a role in the pathophysiology of certain imprinting disorders (IDs), including Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Prader-Willi syndrome, and Angelman syndrome. The underlying molecular basis of this association, however, requires further elucidation. In this review, we discuss the epigenetic and imprinting alterations of in vivo mouse models and human iPSC models of ART. Mouse models have demonstrated aberrant regulation of imprinted genes involved with ART-related IDs. In the past decade, iPSC technology has provided a platform for patient-specific cellular models of culture-associated perturbed imprinting. However, despite ongoing efforts, a deeper understanding of the susceptibility of iPSCs to epigenetic perturbation is required if they are to be reliably used for modelling ART-associated IDs. Comparing the patterns of susceptibility of imprinted genes in mouse models and IPSCs in culture improves the current understanding of the underlying mechanisms of ART-linked IDs with implications for our understanding of the influence of environmental factors such as culture and hormone treatments on epigenetically important regions of the genome such as imprints

    The atypical mammalian ligand Delta-like homologue 1 (Dlk1) can regulate Notch signalling in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian <it>Delta-like 1 </it>(<it>Dlk-1</it>) protein shares homology with Notch ligands but lacks a critical receptor-binding domain. Thus it is unclear whether it is able to interact with Notch <it>in vivo</it>. Unlike mammals, <it>Drosophila </it>have a single Notch receptor allowing a simple <it>in vivo </it>assay for mammalian <it>Dlk1 </it>function.</p> <p>Results</p> <p>Here we show that membrane-bound DLK1 can regulate Notch leading to altered cellular distribution of Notch itself and inhibiting expression of Notch target genes. The resulting adult phenotypes are indicative of reduced Notch function and are enhanced by <it>Notch </it>mutations, confirming that DLK1 action is antagonistic. In addition, cells expressing an alternative <it>Dlk1 </it>isoform exhibit alterations in cell size, functions previously not attributed to Notch suggesting that DLK1 might also act via an alternative target.</p> <p>Conclusion</p> <p>Our results demonstrate that DLK1 can regulate the Notch receptor despite its atypical structure.</p

    Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation.

    Get PDF
    Genomic imprinting is an epigenetic mechanism resulting in parental allele-specific gene expression. Defects in normal imprinting are found in cancer, assisted reproductive technologies, and several human syndromes. In mouse models, germline-derived DNA methylation is shown to regulate imprinting. Though imprinting is largely conserved between mammals, species- and tissue-specific domains of imprinted expression exist. Using the cynomolgus macaque (Macaca fascicularis) to assess primate-specific imprinting, we present a comprehensive view of tissue-specific imprinted expression and DNA methylation at established imprinted gene clusters. For example, like mouse and unlike human, macaque IGF2R is consistently imprinted, and the PLAGL1, INPP5F transcript variant 2, and PEG3 imprinting control regions are not methylated in the macaque germline but acquire this post-fertilization. Methylome data from human early embryos appear to support this finding. These suggest fundamental differences in imprinting control mechanisms between primate species and rodents at some imprinted domains, with implications for our understanding of the epigenetic programming process in humans and its influence on disease.This study was conducted by all authors while at the Singapore Institute for Clinical Research and was fully supported by funding from the Agency for Science, Technology and Research, Singapore.This is the author accepted manuscript. The final version is available from Cold Spring Harbor Laboratory Press at http://genome.cshlp.org/content/early/2015/04/10/gr.183301.114.abstract
    corecore