36 research outputs found

    A measurement of the 4He(g,n) reaction from 23 < Eg < 70 MeV

    Full text link
    A comprehensive set of 4He(g,n) absolute cross-section measurements has been performed at MAX-lab in Lund, Sweden. Tagged photons from 23 < Eg < 70 MeV were directed toward a liquid 4He target, and neutrons were identified using pulse-shape discrimination and the Time-of-flight Technique in two liquid-scintillator detector arrays. Seven-point angular distributions have been measured for fourteen photon energies. The results have been subjected to complementary Transition-coefficient and Legendre-coefficient analyses. The results are also compared to experimental data measured at comparable photon energies as well as Recoil-Corrected Continuum Shell Model, Resonating Group Method, and Effective Interaction Hyperspherical-Harmonic Expansion calculations. For photon energies below 29 MeV, the angle-integrated data are significantly larger than the values recommended by Calarco, Berman, and Donnelly in 1983.Comment: 16 pages, 14 figures, some more revisions, submitted to Physical Review

    Polarization Transfer in the ^4He(\vec e,e'\vec p)^3H Reaction up to Q^2 = 2.6 (GeV/c)^2

    Full text link
    We have measured the proton recoil polarization in the ^4He(\vec e,e'\vec p)^3H reaction at Q^2 = 0.5, 1.0, 1.6, and 2.6 (GeV/c)^2. The measured ratio of polarization transfer coefficients differs from a fully relativistic calculation, favoring the inclusion of a predicted medium modification of the proton form factors based on a quark-meson coupling model. In contrast, the measured induced polarizations agree reasonably well with the fully relativistic calculation indicating that the treatment of final-state interactions is under control.Comment: 5 pages, 3 figures, uses revtex.sty, submitted to Physical Review Letter

    Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems

    No full text
    Bremsstrahlung photon beams produced by linac accelerators are currently the most commonly used method of radiotherapy for tumour treatments. When the photon energy exceeds 10 MeV the patient receives an undesired dose due to photoneutron production in the accelerator head. In the last few decades, new sophisticated techniques such as multileaf collimators have been used for a better definition of the target volume. In this case it is crucial to evaluate the photoneutron dose produced after giant dipole resonance (GDR) excitation of the high Z materials (mainly tungsten and lead) constituting the collimator leaves in view of the optimization of the radiotherapy treatment. A Monte Carlo approach has been used to calculate,the photoneutron dose arising from the GDR reaction during radiotherapy with energetic photon beams. The simulation has been performed using the code MCNP4B-GN which is based on MCNP4B, but includes a new routine GAMMAN to model photoneutron production. Results for the facility at IRCC (Istituto per la Ricerca e la Cura del Cancro) Candiolo (Turin), which is based on 18 MV x-rays from a Varian Clinac 2300 C/D, are presented for a variety of different collimator configurations
    corecore