109 research outputs found

    The Evolutionary Processes of Canine Coronaviruses

    Get PDF
    Since the first identification of the virus in 1971, the disease caused by canine coronavirus (CCoV) has not been adequately investigated, and the role that the virus plays in canine enteric illness has not been well established. Only after the emergence in 2002 of SARS in human has new attention been focused on coronaviruses. As a consequence of the relatively high mutation frequency of RNA-positive stranded viruses, CCoV has evolved and, with the biomolecular techniques developed over the last two decades, new virus strains, serotypes, and subtypes have been identified in infected dogs. Considering the widespread nature of CCoV infections among dog populations, several studies have been carried out, focusing upon the epidemiological relevance of these viruses and underlining the need for further investigation into the biology of CCoVs and into the pathogenetic role of the infections. This paper reports the evolutionary processes of CCoVs with a note onto recent diagnostic methods

    Role of the lipid rafts in the life cycle of canine coronavirus

    Get PDF
    Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope

    Evolving prospects on bovine respiratory diseases and management in feedlot cattle

    Get PDF
    Bovine respiratory disease (BRD) is one of the major economical and welfare concerns for the cattle industry worldwide (1). BRD incidence varies enormously according to farm management, prophylaxis measures, involved pathogens, and animal-related predisposing factors since all of them play a decisive role in the development and severity of the disease (2, 3). The Research Topic consequently aims to broaden the current knowledge on BRD etiology, on its pathogenetic mechanisms, on possible hazards related to breeding and transport practices, on immunopathological implications, on new technologies for the diagnosis, on possible prophylaxis and treatment, as well as on risk factors and on emerging antimicrobial resistance (AMR). Due to the multifactorial etiology of the syndrome, the articles encompass within this Research Topic have all a multidisciplinary approac

    Editorial: Respiratory diseases and management in livestock

    Get PDF
    Among the challenges in the livestock industry, respiratory diseases can lead to significant economic losses and compromise animal health and welfare (1). These diseases can affect various species (cattle, pigs, horses, sheep, and goats), and their etiology may involve a range of agents such as viruses, bacteria and fungi (2, 3). Moreover, in cases of bacterial infections the use of antibiotics is often necessary, contributing to the spread of AMR/AMR genes (4). However, effective management and control require a comprehensive approach. Early disease diagnosis, preventive practices such as vaccinations and monitoring are crucial for mitigating the impact of respiratory diseases. Therefore, the present Research Topic aims to provide evidence to various aspects of respiratory diseases. This includes investigating immunity, exploring effective detection, comparing pathogenetic agents and examining the prevalence of respiratory diseases

    Feline Coronavirus and Alpha-Herpesvirus Infections: Innate Immune Response and Immune Escape Mechanisms

    Get PDF
    Over time, feline viruses have acquired elaborateopportunistic properties, making their infections particularly difficult to prevent and treat. Feline coronavirus (FCoV) and feline herpesvirus-1 (FeHV-1), due to the involvement of host genetic factors and immune mechanisms in the development of the disease and more severe forms, are important examples of immune evasion of the host’s innate immune response by feline viruses.It is widely accepted that the innate immune system, which providesan initial universal form of the mammalian host protection from infectious diseases without pre-exposure, plays an essential role in determining the outcome of viral infection.The main components of this immune systembranchare represented by the internal sensors of the host cells that are able to perceive the presence of viral component, including nucleic acids, to start and trigger the production of first type interferon and to activate the cytotoxicity by Natural Killercells, often exploited by viruses for immune evasion.In this brief review, we providea general overview of the principal tools of innate immunity, focusing on the immunologic escape implemented by FCoVand FeHV-1 during infection

    Factors Affecting the Development of Bovine Respiratory Disease: A Cross-Sectional Study in Beef Steers Shipped From France to Italy

    Get PDF
    Bovine respiratory disease (BRD) is a complex, multifactorial syndrome and one of the major welfare and economical concerns for the cattle industry. This 1-year cross-sectional study was aimed at documenting the prevalence of BRD-related pathogens and clinical signs before and after a long journey and at identifying possible predisposition factors. Male Limousine beef steers (n = 169) traveling from France to Italy were health checked and sampled with Deep Nasopharyngeal Swabs (DNS) at loading (T0) and 4 days after arrival (T1). Real-time quantitative PCR was used to quantify the presence of bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine alphaherpesvirus 1 (BoHV-1), bovine coronavirus (BCoV), bovine adenovirus (BAdV), bovine parainfluenza virus 3 (BPIV-3), Histophilus somni, Mannheimia haemolytica, Mycoplasma bovis, and Pasteurella multocida. Weather conditions at departure and arrival were recorded, and the travel conditions were taken from the travel documentation. At T0, even if no animals displayed clinical signs, some of them were already positive for one or more pathogens. At T1, the number of animals displaying clinical signs and positive for BCoV, BAdV, BRSV, H. somni, M. haemolytica, M. bovis, and P. multocida increased dramatically (p < 0.001). Transport also significantly increased co-infection passing from 16.0% at T0 to 82.8% at T1 (p < 0.001). An extra stop during the journey seemed to favor BRSV, M. haemolytica, and P. multocida (p < 0.05). Weather conditions, in particular sudden climate changes from departure to arrival and daily temperature variance, were found to be predisposing factors for many of the pathogens. The farm of arrival also played a role for BRSV, BAdV, and H. somni (p < 0.05). BCoV increased dramatically, but no associations were found confirming that it spreads easily during transport phases. Our findings increased our understanding of factors increasing the likelihood of BRD-related pathogens shedding and can be useful to minimize the incidence of BRD and to implement animal transport regulations

    Severe acute respiratory syndrome coronavirus 2 detection by real time polymerase chain reaction using pooling strategy of nasal samples

    Get PDF
    COVID-19 is a life-threatening multisistemic infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infection control relies on timely identification and isolation of infected people who can alberg the virus for up to 14 days, providing important opportunities for undetected transmission. This note describes the application of rRT-PCR test for simpler, faster and less invasive monitoring of SARS-CoV-2 infection using pooling strategy of samples. Seventeen positive patients were provided with sterile dry swabs and asked to self-collected 2 nasal specimens (#NS1 and #NS2). The #NS1 was individually placed in a single tube and the #NS2 was placed in another tube together with 19 NSs collected from 19 negative patients. Both tubes were then tested with conventional molecular rRT-PCR and the strength of pooling nasal testing was compared with the molecular test performed on the single NS of each positive patient. The pooling strategy detected SARS-CoV-2 RNA to a similar extent to the single test, even when Ct value is on average high (Ct 37–38), confirming that test sensibility is not substantially affected even if the pool contains only one low viral load positive sample. Furthermore, the pooling strategy have benefits for SARS-CoV-2 routinary monitoring of groups in regions with a low SARS-CoV-2 prevalence

    Entry and release of canine coronavirus from polarized epithelial cells.

    No full text
    Virus entry into and release from epithelial cells are polarized as a result of the distribution of the viral receptors. In order to establish the polarity of entry and release of CCoV from epithelial cells, the interactions of the virus with A72 and CrFK cells grown on permeable supports was evaluated, and the amount of infective virus in the apical and in the basolateral media was determined and compared. Infection of A72 cells after different times post seeding demonstrated that CCoV grow after infection from both apical and basolateral sides. In CrFK cells, CCoV was observed in both compartments only in the later phase of the infection. To establish the reciprocal binding of CCoV on plasma membrane, A72 cells on a permeable support were preincubated with a mAb specific for CCoV. Infection from the apical side was blocked by mAb applied to that side; in contrast, such treatment on the basolateral side had no effect on the infectious process. Similarly, the low levels of CCoV observed after basolateral exposure to virus was abolished following mAb treatment of that side. The identification of CCoV into the basolateral medium could play an important role in the viral pathogenesis

    Canine coronavirus inactivation with physical and chemical agents

    No full text
    Canine coronavirus (CCoV) is responsible for mild or moderate enteritis in puppies. The virus is highly contagious and avoiding contact with infected dogs and their excretions is the only way to ensure disease prevention. Since no studies have yet focused on the sensitivity of CCoV to chemical biocides the present investigation examined the efficiency of physical and chemical methods of viral inactivation. CCoV infectivity was stable at +56 C for up to 30 min, but tended to decrease rapidly at +65 C and +75 C. Germicidal ultra-violet (UV–C) light exposure demonstrated no significant effects on virus inactivation for up to 3 days. CCoV was observed to be more stable at pH 6.0–6.5 while extreme acidic conditions inactivated the virus. Two tested aldehydes inactivated the virus but their action was temperature- and time-dependent. The methods for CCoV inactivation could be applied as animal models to study human coronavirus infection, reducing the risk of accidental exposure of researchers to pathogens during routine laboratory procedures
    corecore