5 research outputs found

    Serological tests for gambiense human African trypanosomiasis detect antibodies in cattle

    No full text
    Abstract Background Serological tests for gambiense human African trypanosomiasis (gHAT) detect antibodies to antigens on the cell surface of bloodstream trypanosomes. As trypanosomes that cause animal African trypanosomiasis (AAT) also express related antigens, we have evaluated two rapid diagnostic tests (RDTs) on cattle in trypanosomiasis endemic and non-endemic regions, to determine whether gHAT serological tests could also be used to screen for AAT. Methods Two RDTs, 1G RDT, made with native antigens, and p2G RDT, made with recombinant antigens, were tested on 121 cattle in a trypanosomiasis-free region, and on 312 cattle from a rhodesiense HAT and AAT endemic region. A subset of samples from the endemic region were also tested with two immune trypanolysis (TL) tests. The sensitivity of the tests was estimated by evaluating the result of the RDT on samples that were positive by both microscopy and internal transcribed spacer (ITS) PCR, whilst specificity was the result of the RDT on samples that were negative by ITS PCR and microscopy, and others from the non-endemic region. Results The specificity of the p2G RDT on cattle from the non-endemic region was 97.5% (95% CI: 93.0–99.2%), compared to only 57.9% (95% CI: 48.9–66.3%) for 1G RDT. The specificities of 1G RDT, p2G RDT and TL on endemic control cattle were 14.6% (95% CI: 9.7–21.5%), 22.6% (95% CI: 16.4–30.3%) and 68.3% (95% CI: 59.6–75.9%), respectively. The sensitivities of the tests on trypanosome positive samples were 85.1% (95% CI: 79.1–89.7%), 89.1% (95% CI: 83.7–93.0%) and 59.3% (95% CI: 51.8–66.4%), respectively. Among the same samples, 51.7% were positive by both TL and the 1G RDT. Conclusions These serological tests detect cross-reacting antibodies in cattle. The p2G RDT based on recombinant antigens had a high specificity in a non-endemic region, while the 1G RDT had a lower specificity, suggesting cross-reactivity with other pathogens

    Identification of <i>Echinococcus granulosus</i> strains using polymerase chain reaction–restriction fragment length polymorphism amongst livestock in Moroto district, Uganda

    No full text
    A descriptive study was conducted to identify the different strains of Echinococcus granulosus occurring in livestock in Moroto district, Uganda. Echinococcus cysts from 104 domestic animals, including cattle, sheep, goats and camels, were taken and examined by microscopy, polymerase chain reaction with restriction fragment length polymorphism and Sanger DNA sequencing. Echinococcus granulosus genotypes or strains were identified through use of Bioinformatics tools: BioEdit, BLAST and MEGA6. The major finding of this study was the existence of a limited number of E. granulosus genotypes from cattle, goats, sheep and camels. The most predominant genotype was G1 (96.05%), corresponding to the common sheep strain. To a limited extent (3.95%), the study revealed the existence of Echinococcus canadensis G6/7 in three (n = 3) of the E. granulosus–positive samples. No other strains of E. granulosus were identified. It was concluded that the common sheep strain of Echinococcus sensu stricto and G6/7 of E. canadensis were responsible for echinococcal disease in Moroto district, Uganda

    Immunological and biochemical biomarker alterations among SARS-COV-2 patients with varying disease phenotypes in Uganda

    No full text
    Abstract Every novel infection requires an assessment of the host response coupled with identification of unique biomarkers for predicting disease pathogenesis, treatment targets and diagnostic utility. Studies have exposed dysregulated inflammatory response induced by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as significant predictor or cause of disease severity/prognosis and death. This study evaluated inflammatory biomarkers induced by SARS-CoV-2 in plasma of patients with varying disease phenotypes and healthy controls with prognostic or therapeutic potential. We stratified SARS-CoV-2 plasma samples based on disease status (asymptomatic, mild, severe, and healthy controls), as diagnosed by RT-PCR SARS-CoV-2. We used a solid phase sandwich and competitive Enzyme-Linked Immunosorbent Assay (ELISA) to measure levels of panels of immunological (IFN-γ, TNF-α, IL-6, and IL-10) and biochemical markers (Ferritin, Procalcitonin, C-Reactive Protein, Angiotensin II, Homocysteine, and D-dimer). Biomarker levels were compared across SARS-CoV-2 disease stratification. Plasma IFN-γ, TNF-α, IL-6, and IL-10 levels were significantly (P < 0.05) elevated in the severe SARS-CoV-2 patients as compared to mild, asymptomatic, and healthy controls. Ferritin, Homocysteine, and D-dimer plasma levels were significantly elevated in severe cases over asymptomatic and healthy controls. Plasma C-reactive protein and Angiotensin II levels were significantly (P < 0.05) higher in mild than severe cases and healthy controls. Plasma Procalcitonin levels were significantly higher in asymptomatic than in mild, severe cases and healthy controls. Our study demonstrates the role of host inflammatory biomarkers in modulating the pathogenesis of COVID-19. The study proposes a number of potential biomarkers that could be explored as SARS-CoV-2 treatment targets and possible prognostic predictors for a severe outcome. The comprehensive analysis of prognostic biomarkers may contribute to the evidence-based management of COVID-19 patients
    corecore