167 research outputs found

    Electronic states and magnetic structure at the Co3O4 (110) surface: a first principles study

    Full text link
    Tricobalt tetraoxide (Co3O4) is an important catalyst and Co3O4(110) is a frequently exposed surface in Co3O4 nanomaterials. We employed Density-functional theory with on-site Coulomb repulsion U term to study the atomic structures, energetics, magnetic and electronic properties of the two possible terminations, A and B, of this surface. These calculations predict A as the stable termination in a wide range of oxygen chemical potentials, consistent with recent experimental observations. The Co3+ ions do not have a magnetic moment in the bulk, but become magnetic at the surface, which leads to surface magnetic orderings different from the one in the bulk. Surface electronic states are present in the lower half of the bulk band gap and cause partial metallization of both surface terminations. These states are responsible for the charge compensation mechanism stabilizing both polar terminations. The computed critical thickness for polarity compensation is 4 layers

    Solvent Effects on the Adsorption Geometry and Electronic Structure of Dye-Sensitized TiO2: A First-Principles Investigation

    Get PDF
    The performance of dye-sensitized solar cells (DSSCs) depends significantly on the adsorption geometry of the dye on the semiconductor surface. In turn, the stability and geometry of the adsorbed molecules is influenced by the chemical environment at the electrolyte/ dye/TiO2 interface. To gain insight into the effect of the solvent on the adsorption geometries and electronic properties of dye-sensitized TiO2 interfaces, we carried out first-principles calculations on organic dyes and solvent (water or acetonitrile) molecules coadsorbed on the (101) surface of anatase TiO2. Solvent molecules introduce important modifications on the dye adsorption geometry with respect to the geometry calculated in vacuo. In particular, the bonding distance of the dye from the Ti anchoring atoms increases, the adsorption energy decreases, and the two C−O bonds in the carboxylic moieties become more symmetric than in vacuo. Moreover, the adsorbed solvent induces the deprotonation of the dye due to the changing the acid/base properties of the system. Analysis of the electronic structure for the dye-sensitized TiO2 structures in the presence of coadsorbed solvent molecules shows an upward shift in the TiO2 conduction band of 0.2 to 0.5 eV (0.5 to 0.8 eV) in water (acetonitrile). A similar shift is calculated for a solvent monolayer on unsensitized TiO2. The overall picture extracted from our calculations is consistent with an upshift of the conduction band in acetonitrile (2.04 eV vs SCE) relative to water (0.82 eV vs SCE, pH 7), as reported in previous studies on TiO2 flatband potential (Redmond, G.; Fitzmaurice, D. J. Phys. Chem. 1993, 97, 1426−1430) and suggests a relevant role of the solvent in determining the dye− semiconductor interaction and electronic coupling

    Formation and stability of reduced TiO_x layers on anatase TiO_2(101): identification of a novel Ti_2O_3 phase

    Full text link
    We use density functional theory (DFT) calculations to investigate structural models consisting of anatase TiO2(101) slabs covered by reduced overlayers formed by (101) crystallographic shear planes (CSPs). Ab initio thermodynamics supports the stability of these structures under a wide range of experimental conditions. The overlayers are found to have Ti2O3 stoichiometry with a crystal structure different from the known corundum-like Ti2O3 (here denoted {\alpha}-Ti2O3) phase. DFT calculations predict this new "csp-Ti2O3" phase to be energetically close to {\alpha}-Ti2O3 and to have also a similar band gap. These results suggest a possible role of the csp-Ti2O3 phase in the properties of black TiO2, a promising photocatalytic material made of nanoparticles with a crystalline TiO2 core and a highly reduced TiOx shell that is capable of absorbing the whole spectrum of visible light

    Band Alignment in Molecular Devices: Influence of Anchoring Group and Metal Work Function

    Full text link
    We present periodic Density Functional Theory calculations of the electronic properties of molecular junctions formed by amine-, and thiol-terminated alkane chains attached to two metal (Au, Ag) electrodes. Based on extensive analysis that includes molecular monolayers of varying densities, we establish a relationship between the alignment of the molecular energy levels and the interface dipoles, which shows that the band alignment (BA) in the limit of long, isolated chains is independent of the link group and can be computed from a reference system of non interacting molecule + metal electrodes. The main difference between the amine and thiol linkers is the effective dipole moment at the contact. This is very large, about 4.5 D, for amine linkers, leading to a strong dependence of the BA on the monolayer density and a slow convergence to the isolated molecule limit. Instead, this convergence is fast for S anchors due to the very small, ~ 0.2 D, effective dipoles at the contacts

    Electronic structure and bonding properties of cobalt oxide in the spinel structure

    Full text link
    The spinel cobalt oxide Co3O4 is a magnetic semiconductor containing cobalt ions in Co2+ and Co3+ oxidation states. We have studied the electronic, magnetic and bonding properties of Co3O4 using density functional theory (DFT) at the Generalized Gradient Approximation (GGA), GGA+U, and PBE0 hybrid functional levels. The GGA correctly predicts Co3O4 to be a semiconductor, but severely underestimates the band gap. The GGA+U band gap (1.96 eV) agrees well with the available experimental value (~ 1.6 eV), whereas the band gap obtained using the PBE0 hybrid functional (3.42 eV) is strongly overestimated. All the employed exchange-correlation functionals predict 3 unpaired d electrons on the Co2+ ions, in agreement with crystal field theory, but the values of the magnetic moments given by GGA+U and PBE0 are in closer agreement with the experiment than the GGA value, indicating a better description of the cobalt localized d states. Bonding properties are studied by means of Maximally Localized Wannier Functions (MLWFs). We find d-type MLWFs on the cobalt ions, as well as Wannier functions with the character of sp3d bonds between cobalt and oxygen ions. Such hybridized bonding states indicate the presence of a small covalent component in the primarily ionic bonding mechanism of this compound.Comment: 24 pages, 8 figure

    Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering

    Get PDF
    We report a quantum mechanical investigation on the nature of electronic trap states in realistic models of individual and sintered anatase TiO2 nanocrystals (NCs) of ca. 3 nm diameter. We find unoccupied electronic states of lowest energy to be localized within the central part of the NCs, and to originate from under-coordinated surface Ti atoms lying mainly at the edges between the (100) and (101) facets. These localized states are found at about 0.3–0.4 eV below the fully delocalized conduction band states, in good agreement with both electrochemical and spectro-electrochemical results. The overall DensityOf-States (DOS) below the conduction band (CB) can be accurately fitted to an exponential distribution of states, in agreement with capacitance data. Water molecules adsorbed on the NC surface raise the energy and reduce the number of localized states, thus modifying the DOS. As a possible origin of additional trap states, we further investigated the oriented attachment of two TiO2 NCs at various possible interfaces. For the considered models, we found only minor differences between the DOS of two interacting NCs and those of the individual constituent NCs. Our results point at the presence of inherent trap states even in perfectly stoichiometric and crystalline TiO2 NCs due to the unavoidable presence of under-coordinated surface Ti(IV) ions at the (100) facets

    The Reactivity of Anatase TiO2 (211) Surface and the Bond- Charge Counting Model

    Get PDF
    In this chapter, we intend to present a generic understanding of surface reactivity and water dissociation on TiO2 surfaces through a study of anatase TiO2 (211) surface—an idea model surface containing both four-coordinated Ti atom (Ti4) and five-coordinated Ti atom (Ti5). Our first-principles calculations show that the (211) surface is a high reactivity surface and reveal that water molecule can be easily dissociated on a Ti4 site while it hardly dissociates on Ti5 site. Furthermore, we introduce bond-charge counting model to clarify the mechanism. More generally, after an intensive investigation of literature, we found that the bond-charge counting model is applicable to all anatase and rutile TiO2 surfaces including step edges and vacancies where the reactivity of surfaces enable to dissociate water attribute to the existence of Ti4 atom or equivalent Ti4 atom

    Incorporation of Non-metal Impurities at the Anatase TiO2_2(001)-(1×\times4) Surface

    Full text link
    We use first-principles calculations to investigate the adsorption and incorporation of non-metal impurities (N, C) at the anatase TiO2_2(001)-(1×\times4) reconstructed surface. We analyze in detail the influence of the surface structure and local strain on the impurity binding sites and incorporation pathways and identify important intermediates which facilitate impurity incorporation. We find various subsurface interstitial binding sites and corresponding surface \rightarrow subsurface penetration pathways on the reconstructed surface. This surface also favors the presence of subsurface oxygen-vacancies, to which adsorbed species can migrate to form substitutional impurities. Most notably, we show that the non-exposed oxygen sites just below the surface have a key role in the incorporation of nitrogen and carbon in TiO2_2(001).Comment: 5 figure
    corecore