63 research outputs found

    The Intricate Structural Chemistry of MII2nLn-Type Assemblies

    Get PDF
    The reaction of cis-blocked, square-planar M-II complexes with tetratopic N-donor ligands is known to give metallasupramolecular assemblies of the formula M2nLn. These assemblies typically adopt barrel-like structures, with the ligands paneling the sides of the barrels. However, alternative structures are possible, as demonstrated by the recent discovery of a Pt8L4 cage with unusual gyrobifastigium-like geometry. To date, the factors that govern the assembly of (M2nLn)-L-II complexes are not well understood. Herein, we provide a geometric analysis of M2nLn complexes, and we discuss how size and geometry of the ligand is expected to influence the self-assembly process. The theoretical analysis is complemented by experimental studies using different cis-blocked Pt-II complexes and metalloligands with four divergent pyridyl groups. Mononuclear metalloligands gave mainly assemblies of type Pt8L4, which adopt barrel- or gyrobifastigium-like structures. Larger assemblies can also form, as evidenced by the crystallographic characterization of a Pt10L5 complex and a Pt16L8 complex. The former adopts a pentagonal barrel structure, whereas the latter displays a barrel structure with a distorted square orthobicupola geometry. The Pt16L8 complex has a molecular weight of more than 23 kDa and a diameter of 4.5 nm, making it the largest, structurally characterized M2nLn complex described to date. A dinuclear metalloligand was employed for the targeted synthesis of pentagonal Pt10L5 barrels, which are formed in nearly quantitative yields

    <i>N</i>-(4-Methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)-4-((4-methylpiperazin-1-yl)methyl)benzamide

    No full text
    Imatinib is one of the most used therapeutic agents to treat leukemia, which specifically inhibits the activity of tyrosine kinases. This polytopic molecule has been structurally characterized only in the form of its piperazin-1-ium salt (mesylate, picrate, citrate, fumarate or malonate). Herein we present the crystal structure of the freebase Imatinib which precipitated from a 1:10 mixture with arginine. The molecule realizes an extended conformation and forms infinite H-bonded chains through its amide, amine and pyrimidine groups

    Novel Polymorph of Favipiravir—An Antiviral Medication

    No full text
    Various solid forms of pharmaceutically important compounds exhibit different physical properties and bioactivity; thus, knowledge of the structural landscape and prediction of spontaneous polymorph transformations for an active pharmaceutical ingredient is of practical value for the pharmaceutical industry. By recrystallization from ethyl acetate, a novel polymorph of 6-fluoro-3-hydroxypyrazine-2-carboxamide (trademark favipiravir, RNA polymerase inhibitor) was obtained and characterized using differential scanning calorimetry (DSC), infra-red spectroscopy and powder X-ray diffraction (XRD) analysis. The favipiravir molecule in two polymorphs realizes similar H-bonding motifs, but the overall H-bonded networks differ. Based on periodic density functional theory calculations, the novel tetragonal polymorph with two interpenetrated H-bonded networks is slightly less stable than the orthorhombic one with the zst topology of the underlying H-bonded net that is in accord with experimentally observed powder XRD patterns of slow conversion of the tetragonal phase to the orthorhombic one. However, topological analysis of net relations revealed that no transformations can be applied to convert H-bonded networks in the experimental unit cells, and DSC data indicate no solid-state reactions at heating

    Novel Polymorph of Favipiravir—An Antiviral Medication

    No full text
    Various solid forms of pharmaceutically important compounds exhibit different physical properties and bioactivity; thus, knowledge of the structural landscape and prediction of spontaneous polymorph transformations for an active pharmaceutical ingredient is of practical value for the pharmaceutical industry. By recrystallization from ethyl acetate, a novel polymorph of 6-fluoro-3-hydroxypyrazine-2-carboxamide (trademark favipiravir, RNA polymerase inhibitor) was obtained and characterized using differential scanning calorimetry (DSC), infra-red spectroscopy and powder X-ray diffraction (XRD) analysis. The favipiravir molecule in two polymorphs realizes similar H-bonding motifs, but the overall H-bonded networks differ. Based on periodic density functional theory calculations, the novel tetragonal polymorph with two interpenetrated H-bonded networks is slightly less stable than the orthorhombic one with the zst topology of the underlying H-bonded net that is in accord with experimentally observed powder XRD patterns of slow conversion of the tetragonal phase to the orthorhombic one. However, topological analysis of net relations revealed that no transformations can be applied to convert H-bonded networks in the experimental unit cells, and DSC data indicate no solid-state reactions at heating

    Dihydrogen Bonds in Salts of Boron Cluster Anions [BnHn]2− with Protonated Heterocyclic Organic Bases

    No full text
    Dihydrogen bonds attract much attention as unconventional hydrogen bonds between strong donors of H-bonding and polyhedral (car)borane cages with delocalized charge density. Salts of closo-borate anions [B10H10]2&minus; and [B12H12]2&minus; with protonated organic ligands 2,2&rsquo;-dipyridylamine (BPA), 1,10-phenanthroline (Phen), and rhodamine 6G (Rh6G) were selectively synthesized to investigate N&minus;H...H&minus;B intermolecular bonding. It was found that the salts contain monoprotonated and/or diprotonated N-containing cations at different ratios. Protonation of the ligands can be implemented in an acidic medium or in water because of hydrolysis of metal cations resulting in the release of H3O+ cations into the reaction solution. Six novel compounds were characterized by X-ray diffraction and FT-IR spectroscopy. It was found that strong dihydrogen bonds manifest themselves in FT-IR spectra that allows one to use this technique even in the absence of crystallographic data

    N-Cyclohexylcyclohexanaminium {[acetyl(methyl)amino]methyl}bis [4,5-dibromobenzene-1,2-diolato]silicate(IV) 4,5-dibrobenzene-1,2-diol Ethanol Solvate

    No full text
    An X-ray diffraction study of a transesterification product of N-methyl-N-(trimethoxysilylmethyl)acetamide by 4,5-dibromobenzene-1,2-diol was carried out. It was established that the coordination polyhedron of the silicon atom in an anionic complex is a distorted octahedron disordered due to the superposition of the &Delta; and &Lambda; optical isomers. The presence of various hydrogen donor groups in bis(cyclohexyl)ammonium cations, solvent ethanol molecules, and non-coordinated 4,5-dibromobenzene-1,2-diol caused the formation of H-bonded chains, while dibromobenzenediol also took part in stacking interactions

    Crystal structure of (E)-1-(2,4-dinitrophenyl)-2-[(E)-5-phenyl-1-(p-tolyl)pent-2-en-4-yn-1-ylidene]hydrazine

    No full text
    In the title compound, C24H18N4O4, the plane of the phenyl ring is inclined to those of the toluene ring and the dinitro-substituted benzene ring by 66.96 (19) and 47.06 (18)°, respectively, while the planes of the two benzene rings are inclined to one another by 36.26 (19)°. There is an intramolecular N—H...O hydrogen bond between the NH group and the O atom of a nitro group, forming an S(6) ring motif. In the crystal, molecules are linked by C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional network. There are also weak π–π interactions present involving the phenyl ring and the dinitro-substituted benzene ring [inter-centroid distance = 3.741 (2) Å]

    Polymorphism of Carbamazepine Pharmaceutical Cocrystal: Structural Analysis and Solubility Performance

    No full text
    Polymorphism is a common phenomenon among single- and multicomponent molecular crystals that has a significant impact on the contemporary drug development process. A new polymorphic form of the drug carbamazepine (CBZ) cocrystal with methylparaben (MePRB) in a 1:1 molar ratio as well as the drug’s channel-like cocrystal containing highly disordered coformer molecules have been obtained and characterized in this work using various analytical methods, including thermal analysis, Raman spectroscopy, and single-crystal and high-resolution synchrotron powder X-ray diffraction. Structural analysis of the solid forms revealed a close resemblance between novel form II and previously reported form I of the [CBZ + MePRB] (1:1) cocrystal in terms of hydrogen bond networks and overall packing arrangements. The channel-like cocrystal was found to belong to a distinct family of isostructural CBZ cocrystals with coformers of similar size and shape. Form I and form II of the 1:1 cocrystal appeared to be related by a monotropic relationship, with form II being proven to be the thermodynamically more stable phase. The dissolution performance of both polymorphs in aqueous media was significantly enhanced when compared with parent CBZ. However, considering the superior thermodynamic stability and consistent dissolution profile, the discovered form II of the [CBZ + MePRB] (1:1) cocrystal seems a more promising and reliable solid form for further pharmaceutical development

    PdII2L4-type coordination cages up to three nanometers in size

    No full text
    The utilization of large ligands in coordination-based self-assembly represents an attractive strategy for the construction of supramolecular assemblies more than two nanometers in size. However, the implementation of this strategy is hampered by the fact that the preparation of such ligands often requires substantial synthetic effort. Herein, we describe a simple one-step protocol, which allows large bipyridyl ligands with a bent shape to be synthesized from easily accessible and/or commercially available starting materials. The ligands were used to construct PdII2L4-type coordination cages of unprecedented size. Furthermore, we provide evidence that these cages may be stabilized by close intramolecular packing of lipophilic ligand side chains. Packing effects of this kind are frequently encountered in protein assemblies, but they are seldom used as a design element in metallasupramolecular chemistry
    • …
    corecore