626 research outputs found
A novel method to titrate Herpes simplex virus-1 (HSV-1) using laser-based scanning of near-infrared fluorophores conjugated antibodies
Among several strategies used for Herpes simplex virus (HSV) detection in biological specimens, standard plaque assay (SPA) remains the most reliable method to evaluate virus infectivity and quantify viral replication. However, it is a manual procedure, thereby affected by operator subjectivity, and it may be particularly laborious for multiple sample analysis. Here we describe an innovative method to perform the titration of HSV type 1 (HSV-1) in different samples, using the “In-Cell WesternTM” Assay (ICW) from LI-COR, a quantitative immunofluorescence assay that exploits laser-based scanning of near infrared (NIR). In particular, we employed NIR-immunodetection of viral proteins to monitor foci of HSV-1 infection in cell monolayers, and exploited an automated detection of their fluorescence intensity to evaluate virus titre. This innovative method produced similar and superimposable values compared to SPA, but it is faster and can be performed in 96 well plate, thus allowing to easily and quickly analyze and quantify many samples in parallel. These features make our method particularly suitable for the screening and characterization of antiviral compounds, as we demonstrated by testing acyclovir (ACV), the main anti-HSV-1 drug. Moreover, we developed a new data analysis system that allowed to overcome potential bias due to unspecific florescence signals, thus improving data reproducibility. Overall, our method may represents a useful tool for both clinical and research purposes
Herpes simplex virus-type1 (HSV-1) impairs DNA repair in cortical neurons
Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions
EFFICIENT PROPAGATION OF ARCHETYPE JC POLYOMAVIRUS IN COS-7 CELLS: EVALUATION OF REARRANGEMENTS WITHIN NCCR STRUCTURAL ORGANIZATION DURING TRANSFECTION.
John Cunningham virus (JCPyV) is an ubiqui-tous human pathogen that causes disease in immunocom-promised patients. The JCPyV genome is composed of an early region and a late region, which are physically sepa-rated by the non-coding control region (NCCR). The DNA sequence of the NCCR distinguishes two forms of JCPyV, the designated archetype and the prototype, which resulted from a rearrangement of the archetype sequence. To date, the cell culture systems for propagating JCPyV archetype have been very limited in their availability and robust-ness. Prior to this study, it was demonstrated that JCPyV archetype DNA replicates in COS-7 simian kidney cells expressing SV40 TAg and COS-7 cells expressing HIV-1 Tat. Based on these observations, the present study was conducted to reproduce an in vitro model in COS-7 cells transfected with the JCPyV archetype strain in order to study JCPyV DNA replication and analyze NCCR rear-rangements during the viral life cycle. The efficiency of JCPyV replication was evaluated by quantitative PCR (Q-PCR) and by hemagglutination (HA) assay after trans-fection. In parallel, sequence analysis of JCPyV NCCR was performed. JCPyV efficiently replicated in kidney-derived COS-7 cells, as demonstrated by a progressive increase in viral load and virion particle production after transfection. The archetypal structure of NCCR was maintained during the viral cycle, but two characteristic point mutations were detected 28 days after transfection. This model is a useful tool for analyzing NCCR rearrangements during in vitroreplication in cells that are sites of viral persistence, such as tubular epithelial cells of the kidne
Differential redox state contributes to sex disparities in the response to influenza virus infection in male and female mice
Influenza virus replicates intracellularly exploiting several pathways involved in the
regulation of host responses. The outcome and the severity of the infection are thus
strongly conditioned by multiple host factors, including age, sex, metabolic, and redox
conditions of the target cells. Hormones are also important determinants of host immune
responses to influenza and are recently proposed in the prophylaxis and treatment. This
study shows that female mice are less susceptible than males to mouse-adapted influenza
virus (A/PR8/H1N1). Compared with males, PR8-infected females display higher
survival rate (+36%), milder clinical disease, and less weight loss. They also have milder
histopathological signs, especially free alveolar area is higher than that in males, even
if pro-inflammatory cytokine production shows slight differences between sexes; hormone
levels, moreover, do not vary significantly with infection in our model. Importantly,
viral loads (both in terms of viral M1 RNA copies and tissue culture infectious dose
50%) are lower in PR8-infected females. An analysis of the mechanisms contributing
to sex disparities observed during infection reveals that the female animals have higher
total antioxidant power in serum and their lungs are characterized by increase in (i) the
content and biosynthesis of glutathione, (ii) the expression and activity of antioxidant
enzymes (peroxiredoxin 1, catalase, and glutathione peroxidase), and (iii) the expression
of the anti-apoptotic protein Bcl-2. By contrast, infected males are characterized by
high expression of NADPH oxidase 4 oxidase and phosphorylation of p38 MAPK, both
enzymes promoting viral replication. All these factors are critical for cell homeostasis and
susceptibility to infection. Reappraisal of the importance of the host cell redox state and
sex-related effects may be useful in the attempt to develop more tailored therapeutic
interventions in the fight against influenza
Glutathione fine-tunes the innate immune response toward antiviral pathways in a macrophage cell line independently of its antioxidant properties
Glutathione (GSH), a major cellular antioxidant, is considered an inhibitor of the inflammatory response involving reactive oxygen species (ROS). However, evidence is largely based on experiments with exogenously added antioxidants/reducing agents or pro-oxidants. We show that depleting macrophages of 99% of GSH does not exacerbate the inflammatory gene expression profile in the RAW264 macrophage cell line or increase expression of inflammatory cytokines in response to the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS); only two small patterns of LPS-induced genes were sensitive to GSH depletion. One group, mapping to innate immunity and antiviral responses (Oas2, Oas3, Mx2, Irf7, Irf9, STAT1, il1b), required GSH for optimal induction. Consequently, GSH depletion prevented the LPS-induced activation of antiviral response and its inhibition of influenza virus infection. LPS induction of a second group of genes (Prdx1, Srxn1, Hmox1, GSH synthase, cysteine transporters), mapping to nrf2 and the oxidative stress response, was increased by GSH depletion. We conclude that the main function of endogenous GSH is not to limit inflammation but to fine-tune the innate immune response to infection
The adherent/invasive escherichia coli (AIEC) strain LF82 invades and persists in human prostate cell lineRWPE-1 activating a strong inflammatory response
Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary trac
Herpes Simplex Virus type-1 infection induces synaptic dysfunction in cultured cortical neurons via GSK-3 activation and intraneuronal amyloid-β protein accumulation
Increasing evidence suggests that recurrent Herpes Simplex Virus type 1 (HSV-1) infection spreading to the CNS is a risk factor for Alzheimer's Disease (AD) but the underlying mechanisms have not been fully elucidated yet. Here we demonstrate that in cultured mouse cortical neurons HSV-1 induced Ca 2+ -dependent activation of glycogen synthase kinase (GSK)-3. This event was critical for the HSV-1-dependent phosphorylation of amyloid precursor protein (APP) at Thr668 and the following intraneuronal accumulation of amyloid-β protein (Aβ). HSV-1-infected neurons also exhibited: i) significantly reduced expression of the presynaptic proteins synapsin-1 and synaptophysin; ii) depressed synaptic transmission. These effects depended on GSK-3 activation and intraneuronal accumulation of Aβ. In fact, either the selective GSK-3 inhibitor, SB216763, or a specific antibody recognizing Aβ (4G8) significantly counteracted the effects induced by HSV-1 at the synaptic level. Moreover, in neurons derived from APP KO mice and infected with HSV-1 Aβ accumulation was not found and synaptic protein expression was only slightly reduced when compared to wild-type infected neurons. These data further support our contention that HSV-1 infections spreading to the CNS may contribute to AD phenotype
Bacterial biofilm associated with a case of capsular contracture
Capsular contracture is one of the most common complications of implant-based breast augmentation. Despite its prevalence, the etiology of capsular contracture remains controversial although the surface texture of the breast implant, the anatomical position of the prosthesis and the presence of bacterial biofilm could be considered trigger factors. In fact, all medical implants are susceptible to bacterial colonization and biofilm formation. The present study demonstrated the presence of microbial biofilm constituted by cocci in a breast implant obtained from a patient with Baker grade II capsular contracture. This suggests that subclinical infection can be present and involved in low-grade capsular contracture
A polyphenol rich extract from Solanum melongena L. DR2 peel exhibits antioxidant properties and anti-herpes simplex virus type 1 activity in vitro
DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially
and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective
properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair
viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective
effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was
studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical
methods. Results highlighted different compositions of the extracts, with chlorogenic acid and
delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified.
Both samples reduced reactive oxygen species (ROS) production and exhibited scavenging and
chelating properties. DR2C partly counteracted the tBOOH-induced cytotoxicity, with a remarkable
lowering of lactate metabolism under both normoxia and hypoxia; interestingly, it increased
intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for
24 h after viral adsorption, as also confirmed by the reduction of many viral proteins’ expression.
Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be
correlated to its antioxidant properties. Although further studies are needed to better characterize
DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent
Two-year follow-up of macaques developing intermittent control of the human immunodeficiency virus homolog simian immunodeficiency virus SIVmac251 in the chronic phase of infection
Off-therapy control of viremia by HIV-infected individuals has been associated with two likely players: a restricted viral reservoir and an efficient cell-mediated immune response. We previously showed that a combination of highly suppressive antiretroviral therapy and two experimental drugs, i.e., auranofin and buthionine sulfoximine, was able to reduce the viral reservoir, elicit efficient cell-mediated antiviral responses, and induce intermittent posttherapy viral load control in chronically SIVmac251-infected macaques. We here show that the macaques that had received this drug combination and then stopped antiretroviral therapy were also able to maintain low numbers of activated CD4(+) T cells at viral rebound. Moreover, these macaques consistently displayed low-level simian immunodeficiency virus (SIV) diversity, which was in line with the strong and broadly reactive cell-mediated immune responses against conserved Gag antigens. Extended follow-up showed that the two macaques that had received the complete drug combination remained healthy and did not develop AIDS in 2 years of follow-up after therapy suspension. This disease-free survival is longer than twice the average time of progression to AIDS in SIVmac251-infected rhesus macaques. These results suggest that limited numbers of activated T cells at viral rebound and subsequent development of broadly reactive cell-mediated responses may be interrelated in reducing the viral reservoir
- …
