5 research outputs found

    EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tristetraprolin (TTP) is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by a spectrum of both pro- and anti-inflammatory cytokines, mitogens and drugs in a MAPK-dependent manner. So far the contribution of p38 MAPK to the regulation of TTP expression and function has been best described.</p> <p>Results</p> <p>Our results demonstrate the induction of the gene coding TTP (<it>ZFP36</it>) by EGF through the ERK1/2-dependent pathway and implicates the transcription factor ELK-1 in this process. We show that ELK-1 regulates <it>ZFP36 </it>expression by two mechanisms: by binding the <it>ZFP36 </it>promoter directly through ETS-binding site (+ 883 to +905 bp) and by inducing expression of EGR-1, which in turn increases <it>ZFP36 </it>expression through sequences located between -111 and -103 bp.</p> <p>Conclusions</p> <p>EGF activates TTP expression via ELK-1 and EGR-1 transcription factors.</p
    corecore