172 research outputs found

    Promising Experimental Therapies for Metastatic Melanoma

    Get PDF

    A phase I dose-escalation study of TAK-733, an investigational oral MEK inhibitor, in patients with advanced solid tumors.

    Get PDF
    Purpose TAK-733, an investigational, selective, allosteric MEK1/2 inhibitor, has demonstrated antitumor effects against multiple cancer cell lines and xenograft models. This first-in-human study investigated TAK-733 in patients with solid tumors. Methods Patients received oral TAK-733 once daily on days 1-21 in 28-day treatment cycles. Adverse events (AEs) were graded using the Common Terminology Criteria for AEs version 3.0. Response was assessed using RECIST v1.1. Blood samples for TAK-733 pharmacokinetics and pharmacodynamics (inhibition of ERK phosphorylation) were collected during cycle 1. Results Fifty-one patients received TAK-733 0.2-22 mg. Primary diagnoses included uveal melanoma (24 %), colon cancer (22 %), and cutaneous melanoma (10 %). Four patients had dose-limiting toxicities of dermatitis acneiform, plus fatigue and pustular rash in one patient, and stomatitis in one patient. The maximum tolerated dose was 16 mg. Common drug-related AEs included dermatitis acneiform (51 %), diarrhea (29 %), and increased blood creatine phosphokinase (20 %); grade ≥ 3 AEs were reported in 27 (53 %) patients. Median Tmax was 3 h; systemic exposure increased less than dose-proportionally over the dose range 0.2-22 mg. On day 21 maximum inhibition of ERK phosphorylation in peripheral blood mononuclear cells of 46-97 % was seen in patients receiving TAK-733 ≥ 8.4 mg. Among 41 response-evaluable patients, 2 (5 %) patients with cutaneous melanoma (one with BRAF L597R mutant melanoma) had partial responses. Conclusions TAK-733 had a generally manageable toxicity profile up to the maximum tolerated dose, and showed the anticipated pharmacodynamic effect of sustained inhibition of ERK phosphorylation. Limited antitumor activity was demonstrated. Further investigation is not currently planned

    Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032

    Get PDF
    Activating mutations in BRAF kinase are common in melanomas. Clinical trials with PLX4032, the mutant-BRAF inhibitor, show promising preliminary results in patients selected for the presence of V600E mutation. However, activating V600K mutation is the other most common mutation, yet patients with this variant are currently excluded from the PLX4032 trials. Here we present evidence that a patient bearing the BRAF V600K mutation responded remarkably to PLX4032, suggesting that clinical trials should include all patients with activating BRAF V600E/K mutations

    Phase II assessment of talabostat and cisplatin in second-line stage IV melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastatic melanoma is an incurable disease with an average survival of less than one year. Talabostat is a novel dipeptidyl peptidase inhibitor with immunostimulatory properties.</p> <p>Methods</p> <p>This phase II, open label, single arm study was conducted to evaluate the safety and efficacy of 75–100 mg/m<sup>2 </sup>cisplatin combined with 300–400 mcg talabostat bid for 6, 21-day cycles. The primary endpoint was overall response. The rate of complete responses, duration of overall objective response, progression-free survival (PFS), and overall survival were the secondary endpoints.</p> <p>Results</p> <p>Six objective partial responses were recorded in the 74 patients (8.1%) in the intention-to-treat population. Five of these responses involved the 40 evaluable patients (12.5%). Thirty-one percent of patients reported SAEs to the combination of talabostat and cisplatin.</p> <p>Conclusion</p> <p>Acceptable tolerability was observed in the intention-to-treat population and antitumor activity was observed in 12.5% of evaluable patients, which is not greater than historical expectation with cisplatin alone.</p

    A Phase II Trial of the Epothilone B Analog Ixabepilone (BMS-247550) in Patients with Metastatic Melanoma

    Get PDF
    Ixabepilone (BMS-247550), an epothilone B analog, is a microtubule stabilizing agent which has shown activity in several different tumor types and preclinical models in melanoma. In an open label, one-arm, multi-center phase II trial the efficacy and toxicity of this epothilone was investigated in two different cohorts: chemotherapy-naïve (previously untreated) and previously treated patients with metastatic melanoma.Eligible patients had histologically-confirmed stage IV melanoma, with an ECOG performance status of 0 to 2. Ixabepilone was administered at a dose of 20 mg/m(2) on days 1, 8, and 15 during each 28-day cycle. The primary endpoint was response rate (RR); secondary endpoints were time to progression (TTP) and toxicity. Twenty-four patients were enrolled and 23 were evaluable for response. Initial serum lactate dehydrogenase (LDH) levels were elevated in 6/11 (55%) of the previously treated and in 5/13 (38%) of the previously untreated patients. No complete or partial responses were seen in either cohort. One patient in the previously treated group developed neutropenia and fatal septic shock. Seventeen patients (8 in the previously untreated group and 9 in the previously treated group) progressed after 2 cycles, whereas six patients (3 in each group) had stable disease after 2-6 cycles. Median TTP was 1.74 months in the previously untreated group (95% CI = 1.51 months, upper limit not estimated) and 1.54 months in the previously treated group (95% CI = 1.15 months, 2.72 months). Grade 3 and/or 4 toxicities occurred in 5/11 (45%) of previously untreated and in 5/13 (38%) of previously treated patients and included neutropenia, peripheral neuropathy, fatigue, diarrhea, and dyspnea.Ixabepilone has no meaningful activity in either chemotherapy-naïve (previously untreated) or previously treated patients with metastatic melanoma. Further investigation with ixabepilone as single agent in the treatment of melanoma is not warranted.Clinical Trials.gov NCT00036764

    Assessing the clinical utility of measuring Insulin-like Growth Factor Binding Proteins in tissues and sera of melanoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different Insulin-like Growth Factor Binding Proteins (IGFBPs) have been investigated as potential biomarkers in several types of tumors. In this study, we examined both IGFBP-3 and -4 levels in tissues and sera of melanoma patients representing different stages of melanoma progression.</p> <p>Methods</p> <p>The study cohort consisted of 132 melanoma patients (primary, n = 72; metastatic, n = 60; 64 Male, 68 Female; Median Age = 56) prospectively enrolled in the New York University School of Medicine Interdisciplinary Melanoma Cooperative Group (NYU IMCG) between August 2002 and December 2006. We assessed tumor-expression and circulating sera levels of IGFBP-3 and -4 using immunohistochemistry and ELISA assays. Correlations with clinicopathologic parameters were examined using Wilcoxon rank-sum tests and Spearman-rank correlation coefficients.</p> <p>Results</p> <p>Median IGFBP-4 tumor expression was significantly greater in primary versus metastatic patients (70% versus 10%, p = 0.01) A trend for greater median IGFBP-3 sera concentration was observed in metastatic versus primary patients (4.9 μg/ml vs. 3.4 μg/ml, respectively, p = 0.09). However, sera levels fell within a normal range for IGFBP-3. Neither IGFBP-3 nor -4 correlated with survival in this subset of patients.</p> <p>Conclusion</p> <p>Decreased IGFBP-4 tumor expression might be a step in the progression from primary to metastatic melanoma. Our data lend support to a recently-described novel tumor suppressor role of secreting IGFBPs in melanoma. However, data do not support the clinical utility of measuring levels of IGFBP-3 and -4 in sera of melanoma patients.</p

    Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients.

    Get PDF
    BACKGROUND: Recent evidence suggests that immunotherapy efficacy in melanoma is modulated by gut microbiota. Few studies have examined this phenomenon in humans, and none have incorporated metatranscriptomics, important for determining expression of metagenomic functions in the microbial community. METHODS: In melanoma patients undergoing immunotherapy, gut microbiome was characterized in pre-treatment stool using 16S rRNA gene and shotgun metagenome sequencing (n = 27). Transcriptional expression of metagenomic pathways was confirmed with metatranscriptome sequencing in a subset of 17. We examined associations of taxa and metagenomic pathways with progression-free survival (PFS) using 500 × 10-fold cross-validated elastic-net penalized Cox regression. RESULTS: Higher microbial community richness was associated with longer PFS in 16S and shotgun data (p \u3c 0.05). Clustering based on overall microbiome composition divided patients into three groups with differing PFS; the low-risk group had 99% lower risk of progression than the high-risk group at any time during follow-up (p = 0.002). Among the species selected in regression, abundance of Bacteroides ovatus, Bacteroides dorei, Bacteroides massiliensis, Ruminococcus gnavus, and Blautia producta were related to shorter PFS, and Faecalibacterium prausnitzii, Coprococcus eutactus, Prevotella stercorea, Streptococcus sanguinis, Streptococcus anginosus, and Lachnospiraceae bacterium 3 1 46FAA to longer PFS. Metagenomic functions related to PFS that had correlated metatranscriptomic expression included risk-associated pathways of L-rhamnose degradation, guanosine nucleotide biosynthesis, and B vitamin biosynthesis. CONCLUSIONS: This work adds to the growing evidence that gut microbiota are related to immunotherapy outcomes, and identifies, for the first time, transcriptionally expressed metagenomic pathways related to PFS. Further research is warranted on microbial therapeutic targets to improve immunotherapy outcomes

    Clinical relevance of Neutral Endopeptidase (NEP/CD10) in melanoma

    Get PDF
    BACKGROUND: Overexpression of Neutral Endopeptidase (NEP) has been reported in metastatic carcinomas, implicating NEP in tumor progression and suggesting a role for NEP inhibitors in its treatment. We investigated the role of NEP expression in the clinical progression of cutaneous melanoma. METHODS: We screened 7 melanoma cell lines for NEP protein expression. NEP-specific siRNA was transfected into the lines to examine the role of gene transcription in NEP expression. Immunohistochemistry was done for 93 specimens and correlated with clinicopathologic parameters. Thirty-seven metastatic melanoma specimens were examined for NEP transcript expression using Affymetrix GeneChips. In a subset of 25 specimens for which both transcript and protein expression was available, expression ratios were used to identify genes that co-express with NEP in GeneChip analysis. RESULTS: NEP was overexpressed in 4/7 human melanoma cell lines, and siRNA knock-down of NEP transcripts led to downregulation of its protein expression. NEP protein overexpression was significantly more common in metastatic versus primary tumors (P = 0.002). Twelve of 37 (32%) metastatic tumors had increased NEP transcript expression, and an association was observed between NEP transcript upregulation and protein overexpression (P < 0.0001). Thirty-eight genes were found to significantly co-express with NEP (p < 0.005). Thirty-three genes positively correlated with NEP, including genes involved in the MAP kinase pathway, antigen processing and presentation, apoptosis, and WNT signaling pathway, and 5 genes negatively correlated with NEP, including genes of focal adhesion and the notch signaling pathways. CONCLUSION: NEP overexpression, which seems to be largely driven by increased transcription, is rare in primary melanoma and occurs late in melanoma progression. Functional studies are needed to better understand the mechanisms of NEP regulation in melanoma
    • …
    corecore